Skip to main content

Cholesterol-Sphingomyelin Interactions in Cells—Effects on Lipid Metabolism

  • Chapter
Cholesterol

Part of the book series: Subcellular Biochemistry ((SCBI,volume 28))

Abstract

Both cholesterol and sphingomyelin are important constituents of cellular plasma membranes. The molecules are chemically and functionally very different, yet they appear to be attracted to each other in the membrane compartment. It is the aim of this review to discuss how alterations in their membrane interactions may affect lipid homeostasis in cells, and to suggest a molecular explanation for their mutual affinity in membranes. Recent reviews dealing with the subcellular distribution and transport of cholesterol (Liscum and Dahl, 1992; Liscum and Faust, 1994; Liscum and Underwood, 1995), with cellular lipid traffic (van Meer, 1989;Pagano, 1990; Voelker, 1991; Allan and Kallen, 1993), with transport and metabolism of sphingomyelin (Koval and Pagano, 1991), and with the role of sphingolipids in cell signaling (Kolesnick, 1991, 1994; Hannun and Bell, 1993; Hannun, 1994), may also be of interest to the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, D., and Kallen, K.-J., 1993, Transport of lipids to the plasma membrane in animal cells, Prog. Lipid Res. 32:195–219.

    Article  PubMed  CAS  Google Scholar 

  • Barenholz, Y., 1984, Sphingomyelin-lecithin balance in membranes: composition, structure, and function relationships, in: Physiology of Membrane Fluidity, Volume 1 (M. Schinitsky, ed.), pp. 131–174, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Beg, Z. H., Stonic, J. A., and Brewer, H. B., 1978, 3-Hydroxy-3-methylglutaryl coenzyme A reductase: regulation of enzymatic activity by phosphorylation and dephosphorylation, Proc. Natl. Acad.Sci. USA 75:3678–3681.

    Article  PubMed  CAS  Google Scholar 

  • Bisgaier, C. L., Chanderbhan, R., Hinds, R. W., Vahouny, G. V., 1985, Adrenal cholesterol esters as substrate source for steroidogenesis, J. Steroid Biochem. 25:961–974.

    Google Scholar 

  • Bittman, R., 1993, A review on the kinetics of cholesterol movement between donor and acceptor bilayer membranes, in: Cholesterol in Model Membranes (L. X. Finegold, ed.), pp. 45–65, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bittman, R., Kasireddy, C.R., Mattjus, P., and Slotte, J. P., 1994, Interaction of cholesterol with sphingomyelin in monolayers and vesicles, Biochemistry 33:11776–11781.

    Article  PubMed  CAS  Google Scholar 

  • Björkhem, I., Andersson, O., Diczfalusy, U., Sevastik, B., Xiu, R. J., Duan, C., Lund, E., 1994, Proc. Natl. Acad. Sci. USA 91:8592–8596.

    Article  PubMed  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1986, A reeeptor-mediated pathway for cholesterol homeostasis, Science 232:34–47.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., Dana, S. E., and Goldstein, J. L., 1975, Receptor-dependent hydrolysis of choles-teryl esters contained in plasma low density lipoproteins, Proc. Natl. Acad. Sci. USA 72:2925–2929.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., Dana, S. E., and Goldstein, J. L., 1973, Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in human fibroblasts by lipoproteins, Proc. Natl. Acad. Sci. USA 70:2162–2166.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, D., Owens, N. F., Phillips, M. C., and Walker, D. A., 1969, Mixed monolayers of phospholipids and cholesterol, Biochim. Biophys. Acta 183:458–465.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Born, E., Mathur, S. N., Johlin, F. C., and Field, F. J., 1992, Sphingomyelin content of intestinal cells membranes regulate cholesterol absorption. Evidence for pancreatic and intestinal cell sphingomyelinase activity, Biochem. J. 286:111–111.

    Google Scholar 

  • Chen, H., Born, E., Mathur, S. N., and Field, F. J., 1993, Cholesterol and sphingomyelin syntheses are regulated independently in cultured human intestinal cells, CaCo-2: role of membrane cholesterol and sphingomyelin content, J. Lipid Res. 34:2159–2167.

    PubMed  CAS  Google Scholar 

  • Collins, J. J., and Phillips, M. C., 1982, Stability and structure of cholesterol-rich codispersions of cholesterol and phosphatidylcholine, J. Lipid Res. 23:291–298.

    PubMed  CAS  Google Scholar 

  • Davidson, W. S., Lund-Katz, S., Johnson, W. J., Anantharamaiah, G. M., Palgunachari, M. N., Seg-rest, J. P., Rothblat, G. H., and Phillips, M. C., 1994, The influence of apolipoprotein structure on the efflux of cellular free cholesterol to high density lipoprotein, J. Biol. Chem. 269:22975–22982.

    PubMed  CAS  Google Scholar 

  • DeGrella, R. F., and Simoni, R. D., 1982, Intracellular transport of cholesterol to the plasma membrane, J. Biol. Chem. 257:14256–14262.

    Google Scholar 

  • Demel, R. A., Bruckdorfer, K. R., and van Deenen, L. L. M., 1972, The effect of sterol structure on the permeability of liposomes to glucose, glycerol, and Rb+, Biochim. Biophys. Acta 255:321–330.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, D. A., 1989, Plasma membrane cholesterol: removal and insertion into the membrane and utilization as substrate for steroidogenesis, Endocrinol. 124:2527–2534.

    Article  CAS  Google Scholar 

  • Futerman, A. H., Stieger, B., Hubbard, A. L., and Pagano, R. E., 1990, Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus, J. Biol. Chem. 265:8650–8657.

    PubMed  CAS  Google Scholar 

  • Gaily, H. U., Seelig, A., and Seelig, J., 1976, Cholesterol induced rod-like motion of fatty acyl chains in lipid bilayers, a deuterium magnetic resonance study, Hoppe-Zeyler’s Z. Physiol. Chem. 357:1447–1450.

    Google Scholar 

  • Gatt, S., and Bierman, E. L., 1980, Sphingomyelin suppresses the binding and utilization of LDL by skin fibroblasts, J. Biol. Chem. 255:3371–3376.

    PubMed  CAS  Google Scholar 

  • Gibson, D. M., and Parker, R. A., 1987, Hydroxymethylglutaryl coenzyme A, in: The Enzymes, Volume XVIII (P. D. Boyer, and E. G. Krebs, eds.), pp. 179–215, Academic Press, NY.

    Google Scholar 

  • Glomset, J. A., 1968, The plasma lecithinicholesterol acyl transferase reaction, J. Lipid Res. 9:155–167.

    PubMed  CAS  Google Scholar 

  • Goldstein, J. L., and Brown, M. S., 1977, The low-density lipoprotein pathway and its relation to atherosclerosis, Annu. Rev. Biochem. 46:897–930.

    Article  PubMed  CAS  Google Scholar 

  • Grönberg, L., Ruan, Z.-s., Bittman, R., and Slotte, J. P., 1991, Interaction of cholesterol with synthetic sphingomyelin derivatives in mixed monolayers, Biochemistry 30:10746–10754.

    Article  PubMed  Google Scholar 

  • Gupta, A. K., and Rudney, H., 1991, Plasma membrane sphingomyelin and the regulation of HMG-CoA reductase activity and cholesterol biosynthesis in cell cultures, J. Lipid Res. 32:125–136.

    PubMed  CAS  Google Scholar 

  • Hannun, Y. A., 1994, The sphingomyelin cycle and second messenger function of ceramide, J. Biol. Chem. 269:3125–3128.

    PubMed  CAS  Google Scholar 

  • Hannun, Y. A., and Bell, R. M., 1993, The sphingomyelin cycle: a prototypic sphingolipid signaling pathway, Adv. Lipid Res. 25:27–41.

    PubMed  CAS  Google Scholar 

  • Ingebritsen, T. S., Parker, R. A., and Gibson, D. M., 1981, Regulation of HMG-CoA reductase by a bicyclic phosphorylation system, J. Biol. Chem. 256:1138–1144.

    PubMed  CAS  Google Scholar 

  • Jeckel, D., Karrenbauer, A., Birle, R., Schmidt, R. R., and Wieland, F., 1990, Sphingomyelin is synthesized in the cis Golgi, FEBS Lett. 261:155–157.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, W. J., Mahlberg, F. H., Rothblat, G. H., and Phillips, M. C., 1991, Cholesterol transport between cells and high density lipoproteins, Biochim. Biophys. Acta 1085:273–298.

    Article  PubMed  CAS  Google Scholar 

  • Kallen, K.-J., Quinn, P., and Allan, D., 1993, Monensin inhibits synthesis of sphingomyelin by blocking transport of ceramide through the Golgi: evidence for two sites of sphingomyelin synthesis in BHK cells, Biochim. Biophys. Acta 1166:305–308.

    Article  PubMed  CAS  Google Scholar 

  • Kallen, K.-J., Allan, D., Whatmore, J. L., and Quinn, P., 1994, Synthesis of surface sphingomyelin in the plasma membrane recycling pathway of BHK cells, Biochim. Biophys. Acta 1191:52–58.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, M. R., and Simoni, R. D., 1985, Transport of cholesterol from the endoplasmic reticulum to the plasma membrane, J. Cell Biol. 101:446–453.

    Article  PubMed  CAS  Google Scholar 

  • Kent, C., 1995, Eucaryotic phospholipid biosynthesis, Annu. Rev. Biochem. 64:315–343.

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto, Y., 1993, Sphingolipid formation, in: The Enzymes, Volume XVI (P. D. Boyer, ed.), pp. 358–407, Academic Press, NY

    Google Scholar 

  • Kolesnick, R. N., 1991, Sphingomyelin and derivatives as cellular signals, Prog. Lipid Res. 30:1–38.

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick, R., 1994, Signal transduction through the sphingomyelin pathway, Mol. Chem.-Neuropathol. 21:287–297.

    Article  PubMed  CAS  Google Scholar 

  • Koval, M., and Pagano, R. E., 1991, Intracellular transport and metabolism of sphingomyelin, Biochim. Biophys. Acta 1082:113–125.

    Article  PubMed  CAS  Google Scholar 

  • Kudchodkar, B. J., Albers, J. J., and Bierman, E. L., 1983, Effects of positively charged sphingomyelin liposomes on cholesterol metabolism of cells in culture, Atherosclerosis 46:353–367.

    Article  PubMed  CAS  Google Scholar 

  • Lange, Y., 1991, Disposition of intracellular cholesterol in human fibroblasts, J. Lipid Res. 32: 329–339.

    PubMed  CAS  Google Scholar 

  • Lange, Y., Echevarria, F., and Steck, T., 1991, Movement of zymosterol, a precursor of cholesterol, among three membranes in human fibroblasts, J. Biol. Chem. 266:21439–21443.

    PubMed  CAS  Google Scholar 

  • Lecuyer, H., and Dervichian, D. G., 1969, Structure of aqueous mixtures of lecithin and cholesterol, J. Mol. Biol. 45:39–57.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D., Sugawara, T., Strauss III., J. F., Clark, B. J., Stocco, D. M., Saenger, P., Rogol, A., Miller, W. L., 1995, Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis, Science 267:1828–1831.

    Article  PubMed  CAS  Google Scholar 

  • Liscum, L., and Dahl, N. K., 1992, Intracellular cholesterol transport, J. Lipid Res. 33:1239–1254.

    PubMed  CAS  Google Scholar 

  • Liscum, L., and Faust, J. R., 1994, Compartmentation of cholesterol within the cell, Curr. Opin. Lipidol. 5:221–226.

    Article  PubMed  CAS  Google Scholar 

  • Liscum, L., and Underwood, K. W., 1995, Intracellular cholesterol transport and compartmentation, J. Biol. Chem. 270:15443–15446.

    Article  PubMed  CAS  Google Scholar 

  • Lund-Katz, S., Laboda, H. M., McLean, L. R., and Phillips, M. C., 1988, Influence of molecular packing and phospholipid type on cholesterol exchange, Biochemistry 27:3416–3423.

    Article  PubMed  CAS  Google Scholar 

  • Mahlberg, F. H., and Rothblat, G. H., 1992, Cellular cholesterol efflux—role of cell membrane kinetic pools and interactions with apoproteins A-I, A-II, and Cs, J. Biol. Chem. 267:4541–4550.

    PubMed  CAS  Google Scholar 

  • Marggraf, W.-D., and Kanfer, J. N., 1984, Biochim. Biophys. Acta 793:346–353.

    Article  PubMed  CAS  Google Scholar 

  • Mattjus, P., and Slotte J. P., 1994, Availability for enzyme-catalyzed oxidation of cholesterol in mixed monolayers containing both phosphatidylcholine and sphingomyelin, Chem. Phys. Lipids 71: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Mattjus, P., Bittman, R., and Slotte, J. P., 1996, Molecular interaction and lateral domain formation in monolayers containing cholesterol and phosphatidylcholines with acyl-or alkyl-linked C16 chains, Langmuir 12:1284–1290.

    Article  CAS  Google Scholar 

  • McLean, L. R., and Phillips, M. C., 1982, Cholesterol desorption from clusters of phosphatidylcholine and cholesterol in unilamellar vesicle bilayers during lipid transfer or exchange, Biochemistry 21:4053–4059.

    Article  PubMed  CAS  Google Scholar 

  • Mehrabian, M., Callaway, K. A., Clarke, C. F, Tanaka, R. D., Greenspan, M., Lusis, A. J., Sparkes, R. S., Mohandas, T., Edmond, J., and Edwards, P. A., 1986, J. Biol. Chem. 261:16249–16255.

    PubMed  CAS  Google Scholar 

  • Mendez, A. J., Oram, J. F., and Bierman, E. L., 1991, Protein kinase C as a mediator of HDL-receptor dependent efflux of intracellular cholesterol, J. Biol. Chem. 266:10104–10111.

    PubMed  CAS  Google Scholar 

  • Needham, D., and Nunn, D. S., 1990, Elastic deformation and failure of lipid bilayer membranes containing cholesterol, Biophys. J. 58:997–1009.

    Article  PubMed  CAS  Google Scholar 

  • Okwu, A. K., Xu, X.-X., Shiratori, Y., and Tabas, I., 1994, Regulation of the threshold for lipoprotein-induced ACAT stimulation in macrophages by cellular sphingomyelin content, J. Lipid Res. 35:644–655.

    PubMed  CAS  Google Scholar 

  • Pagano, R. E., 1990, Lipid traffic in eucaryotic cells: mechanisms for intracellular transport and organelle-specific enrichment of lipids, Curr. Opin. Cell. Biol. 2:652–663.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Nir, S., and Ohki, S., 1971, Permeability properties of phospholipid membranes: effect of cholesterol and temperature, Biochim. Biophys. Acta 266:561–583.

    Article  Google Scholar 

  • Patton, S., 1970, Correlative relationship of cholesterol and sphingomyelin in cell membranes, J. Theor. Biol. 29:489–491.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, M. C., and Finer, E. G., 1974, The stoichiometry and dynamics of lecithin-cholesterol clusters in bilayer membranes, Biochim. Biophys. Acta 356:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Pörn, M. I., and Slotte, J. P., 1990, Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells, Biochem. J. 271:121–126.

    PubMed  Google Scholar 

  • Pörn, M. I., and Slotte, J. P., 1995, Localization of cholesterol in sphingomyelinase-treated fibroblasts, Biochem. J. 308:269–274.

    PubMed  Google Scholar 

  • Pörn, M. I., Åkerman, K. E. O., and Slotte, J. P., 1991a, HDL induce a rapid and transient release of Ca2+ in cultured fibroblasts, Biochem. J. 279:29–33.

    PubMed  Google Scholar 

  • Pörn, M. I., Tenhunen, J., and Slotte, J. P., 1991b, Increased steroid hormone secretion in mouse Leydig tumor cells after induction of cholesterol translocation by sphingomyelin degradation, Biochim. Biophys. Acta 1093:7–12.

    Article  PubMed  Google Scholar 

  • Pörn, M. I., Ares, M., and Slotte, J. P., 1993, Degradation of plasma membrane phosphatidylcholine appears not to affect the cellular cholesterol distribution, J. Lipid Res. 34:1385–1392.

    PubMed  Google Scholar 

  • Ridgway, N. D., 1995, 25-Hydroxycholesterol stimulates sphingomyelin synthesis in Chinese hamster ovary cells, J. Lipid Res. 36:1345–1358.

    PubMed  CAS  Google Scholar 

  • Rothblat, G. H., and Phillips, M. C., 1991, Cholesterol efflux from arterial wall cells, Curr. Opin. Lipidology. 2:288–294.

    Article  CAS  Google Scholar 

  • Rothblat, G. H., Mahlberg, F. H., Johnson, W. J., and Phillips, M. C., 1992, Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux, J. Lipid Res. 33: 1091–1097.

    PubMed  CAS  Google Scholar 

  • Shiratori, Y., Okwu, A., and Tabas, I., 1994, Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTPiphosphatidylcholine cytidylyltransferase, J. Biol. Chem. 269:11337–11348.

    PubMed  CAS  Google Scholar 

  • Slotte, J. P., 1992, Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappear, Biochemistry 31: 5472–5477.

    Article  PubMed  CAS  Google Scholar 

  • Slotte, J. P., and Bierman, E. L., 1988, Depletion of plasma membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts, Biochem. J. 250:653–658.

    PubMed  CAS  Google Scholar 

  • Slotte, J. P., and Lundberg, B., 1983, Effects of cholesterol surface transfer on cholesterol and phosphatidylcholine synthesis in cultured rat arterial smooth muscle cells, Medical Biology 61: 223–227.

    PubMed  CAS  Google Scholar 

  • Slotte, J. P., Oram, J. F., and Bierman, E. L., 1987, Binding of HDL to cell receptors promotes translocation of cholesterol from intracellular membranes to the cell surface, J. Biol. Chem. 262: 12904–12907.

    PubMed  CAS  Google Scholar 

  • Slotte, J. P., Chait, A., and Bierman, E. L., 1988, Cholesterol accumulation in aortic smooth muscle cells exposed to low density lipoproteins, Arteriosclerosis 8:750–758.

    Article  PubMed  CAS  Google Scholar 

  • Slotte, J. P., Hedström, G., Rannstrom, S., and Ekman, S., 1989, Effect of sphingomyelin degradation on cholesterol oxidizability and steady-state distribution between the cell surface and the cell interior, Biochim. Biophys. Acta 985:90–96.

    Article  PubMed  CAS  Google Scholar 

  • Slotte, J. P., Härmälä, A.-S., Jansson, C., and Pörn, M. I., 1990, Rapid turn-over of plasma membrane sphingomyelin and cholesterol in BHK cells after exposure to sphingomyelinase, Biochim. Biophys. Acta 1030:251–257.

    Article  PubMed  CAS  Google Scholar 

  • Smaby, J., Brockman, H. L., and Brown, R. B., 1994, Cholesterol’s interfacial interaction with sphingomyelins and phosphatidylcholines: hydrocarbon chain structure determine the magnitude of condensation, Biochemistry 33:9135–9142.

    Article  PubMed  CAS  Google Scholar 

  • Smutzer, G., and Yeagle, P. L., 1985, Phase behavior of DMPC-cholesterol mixtures—a fluorescence anisotropy study, Biochim. Biophys. Acta 814:274–280.

    Article  PubMed  CAS  Google Scholar 

  • Spence, M. W., Clarke, J. T. R., and Cook, H. W., 1983, Pathways of sphingomyelin metabolism in cultured fibroblasts from normal and sphingomyelin lipidosis subjects, J. Biol. Chem. 258: 8595–8600.

    PubMed  CAS  Google Scholar 

  • Stein, O., Ben-Nairn, M., Dabach, Y., Hollander, G., and Stein, Y., 1992, Modulation of sphingo-myelinase-induced cholesterol esterification in fibroblasts, CaCo-2 cells, macrophages and smooth muscle cells, Biochim. Biophys. Acta 1126:291–298.

    Article  PubMed  CAS  Google Scholar 

  • Stockton, B. W., and Smith, I. C. P., 1976, A deuterium NMR study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes, Chem. Phys. Lipids 17:251–263.

    Article  PubMed  CAS  Google Scholar 

  • Straume, M., and Litman, B. J., 1987, Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from high order analysis of fluorescence anisotropy decay, Biochemistry 26:5121–5126.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, G., 1974, Dual mechanism for the action of cholesterol on membrane permeability, Nature 252:47–49.

    Article  PubMed  CAS  Google Scholar 

  • Tabas, I., Roscoff, W. J., and Boykow, G. C., 1988, ACAT in macrophages utilizes a cellular pool of cholesterol oxidase-accessible cholesterol as substrate, J. Biol. Chem. 263:1266–1272.

    PubMed  CAS  Google Scholar 

  • Urbani, L., and Simoni, R. D., 1990, Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane, J. Biol. Chem. 265:1919–1923.

    PubMed  CAS  Google Scholar 

  • van Echten, G., Iber, H., Stotz, H., Takatsuki, A., and Sandhoff, K., 1990, Eur. J. Cell Biol. 51:135–139.

    PubMed  Google Scholar 

  • van Meer, G., 1989, Lipid traffic in animal cells, Annu. Rev. Cell Biol. 5:247–275.

    Article  PubMed  Google Scholar 

  • Voelker, D. R., 1991, Organelle biogenesis and intracellular lipid transport in eucaryotes, Microbiol. Rev. 55:543–560.

    PubMed  CAS  Google Scholar 

  • Voelker, D. R., and Kennedy, E. P., 1982, Cellular and enzymic synthesis of sphingomyelin, Biochemistry 21:2753–2759.

    Article  PubMed  CAS  Google Scholar 

  • Vos, J. P., Giudici, M. L., van der Bijl, P., Magni, P., Marchesini, S., van Golde, L. M., and Lopes-Cardozo, M., 1995, Sphingomyelin is synthesized at the plasma membrane of oligodendrocytes and by purified myelin membranes: a study with fluorescent-and radio-labelled ceramide analogues, FEBS. Lett. 368:393–396.

    Article  PubMed  CAS  Google Scholar 

  • Warnock, D. E., Roberts, C., Lutz, M. S., Blackburn, W. A., Young, W. W., and Baenziger, J. U., 1993, Determination of plasma membrane lipid mass and composition in cultured Chinese hamster ovary cells using high gradient magnetic affinity chromatography, J. Biol. Chem. 268: 10145–10153.

    PubMed  CAS  Google Scholar 

  • Xu, X.-X., and Tabas, I., 1991, Lipoproteins activate ACAT in macrophages only after cellular cholesterol pools are expanded to a critical threshold level, J. Biol. Chem. 266:17040–17045.

    PubMed  CAS  Google Scholar 

  • Yeagle, P. L., Martin, R. B., Lala, A. K., Lin, H. K., and Bloch, K., 1977, Differential effects of cholesterol and lanosterol on artificial membranes, Proc. Natl. Acad. Sci. USA 74:4924–4926.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peter Slotte, J. (1997). Cholesterol-Sphingomyelin Interactions in Cells—Effects on Lipid Metabolism. In: Bittman, R. (eds) Cholesterol. Subcellular Biochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5901-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5901-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7707-8

  • Online ISBN: 978-1-4615-5901-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics