Skip to main content

Signaling Molecules Derived from the Cholesterol Biosynthetic Pathway

  • Chapter
Cholesterol

Part of the book series: Subcellular Biochemistry ((SCBI,volume 28))

Abstract

The isolation and characterization of many of the enzymes involved in the synthesis of cholesterol represented a major tour de force in the 1950s and 1960s (Mead et al., 1986; Porter and Spurgeon, 1981). These early studies led to the realization that the cyclic cholesterol molecule was derived from a polyisoprenoid, which in turn was shown to be composed of repeating five-carbon branched-chain building blocks derived from isopentenyl diphosphate (Rilling, 1985). The condensation of one or more isopentenyl diphosphate molecules with an allylic isoprenoid diphosphate (e.g., dimethylallyl diphosphate, geranyl diphosphate) is catalyzed by a family of related prenyl transferases that differ in their specificity for the allylic substrate (Edwards et al., 1992; Chen et al., 1994). The resulting linear isoprenoids are intermediates in the synthesis of a number of important compounds, including sterols, dolichols, heme a, steroid hormones, 1,25-dihydroxy vitamin D, bile acids, and geranylgeranyl diphosphate (Figure 1). Isoprenoid moieties, such as farnesyl and geranylgeranyl, are also post-translationally attached to certain proteins to produce prenylated proteins (Figure 1). Such modifications affect the localization and functions of the lipidated proteins. Recent studies indicates that isoprenoid alcohols or acids may also functions as novel signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., and Springer, J., 1980, A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent, Proc. Natl. Acad. Sci. USA 77:3957–3961.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. G. W., 1993, Caveolae: Where incoming and outgoing messengers meet, Proc. Natl. Acad. Sci. USA 90:10904–10913.

    Article  Google Scholar 

  • Araki, H., Shidoji, Y., Yamada, Y., Moriwaki, H., and Muto, Y., 1995, Retinoid agonist activities of synthetic geranyl geranoic acid derivatives, Biochem. Biophys. Res. Commun. 209:66–72.

    Article  PubMed  CAS  Google Scholar 

  • Axelson, M., and Larsson, O., 1995, Low density lipoprotein (LDL) cholesterol is converted to 27-hydroxycholesterol in human fibroblasts, J. Biol. Chem. 270:15102–15110.

    PubMed  CAS  Google Scholar 

  • Bansal, V. S., and Vaidya, S., 1994, Characterization of two distinct allyl pyrophosphatase activities from rat liver microsomes, Arch. Biochem. Biophys. 315:393–399.

    Article  PubMed  CAS  Google Scholar 

  • Biardi, L., Sreedhar, A., Zokaei, A., Vartak, N. B., Bozeat, R. L, Shackelford, J. E., Keller, G. A., and Krisans, S. K., 1994, Mevalonate kinase is predominantly localized in peroxisomes and is defective in patients with peroxisome deficiency disorders, J. Biol. Chem. 269:1197–1205.

    PubMed  CAS  Google Scholar 

  • Björkhem, I., Andersson, O., Diczfalusy, U., Sevastik, B., Xiu, R. J., Duan, C., and Lund, E., 1994, Atherosclerosis and sterol 27-hydroxylase: Evidence for a role of this enzyme in elimination of cholesterol from human macrophages, Proc. Natl. Acad. Sci. USA 91:8592–8596.

    Article  PubMed  Google Scholar 

  • Bonifacino, J. S., and Lippincott-Schwartz, J., 1991, Curr Opin. Cell Biol. 3:592–600.

    Article  PubMed  CAS  Google Scholar 

  • Bradfute, D. L., and Simoni, R. D., 1994, Non-sterol compounds that regulate cholesterogenesis, J. Biol. Chem. 269:6645–6650.

    PubMed  CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1993, Mad bet for rab, Nature 366:14–15.

    Article  PubMed  CAS  Google Scholar 

  • Byskov, A. G., Andersen, C. Y., Nordholm, L. N., Thogersen, H., Gouliang, X., Wassmann, O., Andersen, J. V., Guddal, E., and Roed, T., 1995, Chemical structure of sterols that activate oocyte meiosis, Nature 374:559–562.

    Article  PubMed  CAS  Google Scholar 

  • Cali, J. J., Hsieh, C.-L., Francke, U., and Russell, D. W., 1991, Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis, J. Biol. Chem. 266:7779–7783.

    PubMed  CAS  Google Scholar 

  • Casey, P. J., 1992, Biochemistry of protein prenylation, J. Lipid Res. 33:1731–1740.

    PubMed  CAS  Google Scholar 

  • Casey, P. J., 1995, Protein lipidation in cell signaling, Science 268:221–225.

    Article  PubMed  CAS  Google Scholar 

  • Casey, P. J., Solski, P. A., Der, C. J., and Buss, J. E, 1989, p21ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. USA 86:8323–8327.

    Article  PubMed  CAS  Google Scholar 

  • Chen, A., Kroon, P. A., and Poulter, C. D., 1994, Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure, Prot. Sci. 3:600–607.

    Article  CAS  Google Scholar 

  • Cheng, D., Chang, C. C., Qu, X., and Chang, T. Y., 1995, Activation of acyl-coenzyme A:cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system, J. Biol. Chem. 270:685–695.

    Article  PubMed  CAS  Google Scholar 

  • Christophe, J., and Popjak, G., 1961, Studies in the biosynthesis of cholesterol:XIV. The origin of prenoic acids from allylpyrophosphates in liver enzyme systems, J. Lipid Res. 2:244–257.

    Google Scholar 

  • Chun, K. T., Bar-Nun, S., and Simoni, R. D., 1990, The regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase requires a short-lived protein and occurs in the endoplasmic reticulum, J. Biol. Chem. 265:22004–22010.

    PubMed  CAS  Google Scholar 

  • Correll, C. C., and Edwards, P. A., 1994, Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro, J. Biol. Chem. 269:633–638.

    PubMed  CAS  Google Scholar 

  • Correll, C. C., Ng, L., and Edwards, P. A., 1994, Identification of farnesol as the non-sterol derivitive of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, J. Biol. Chem. 269:17390–17393.

    PubMed  CAS  Google Scholar 

  • Crick, D. C., Andres, D. A., and Waechter, C. J., 1995, Farnesol is utilized for protein isoprenylation and the biosynthesis of cholesterol in mammalian cells, Biochem. Biophys. Res. Commun. 211: 590–599.

    Article  PubMed  CAS  Google Scholar 

  • Donohoue, P. A., Parker, K., and Migeon, C. J., 1995, Congenital adrenal hyperplasia, in: Metabolic Basis of Inherited Disease (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.) Vol. VII, pp. 2929–2966, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Du, E. Z., Kurth, J., Wang, S. L., Humiston, P., and Davis, R. A., 1994, Proteolysis-coupled secretion of the N terminus of apolipoprotein B. Characterization of a transient, translocation arrested intermediate, J. Biol. Chem. 269:24169–24176.

    PubMed  CAS  Google Scholar 

  • Edwards, P. A., and Davis, R. A., 1996, Regulation of sterol biosynthesis, bile acid metabolism and isoprenylation of proteins, in: Biochemistry of Lipids, Lipoproteins and Membranes, 3rd ed. (D. E. Vance and J. E. Vance, eds.) Elsevier, Holland, pp. 341–362.

    Chapter  Google Scholar 

  • Edwards, P. A., Popják, G., Fogelman, A. M., and Edmond, J., 1977, Control of 3-hydroxy-3-methylglutaryl coenzyme A reductase by endogenously synthesized sterols in vitro and in vivo, J. Biol. Chem. 252:1057–1063

    PubMed  CAS  Google Scholar 

  • Edwards, P. A., Lan, S.-F., and Fogelman, A. M., 1983, Alterations in the rates of synthesis and degradation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase produced by cholestyramine and mevinolin, J. Biol. Chem. 258:10219–10222.

    PubMed  CAS  Google Scholar 

  • Edwards, P. A., Ashby, M. N., Spear, D. H., Marrero, P. F., Joly, A., and Popjak, G., 1992, Isoprenoids-biosynthesis and role in the regulation of protein function, Biochem. Soc. Trans. 20:475–480.

    PubMed  CAS  Google Scholar 

  • Ericsson, J., Jackson, S. M., Lee, B. C., and Edwards, P. A., 1995, Sterol regulatory element binding protein binds to a cis element in the promoter of the farnesyl diphosphate synthase gene, Proc. Natl. Acad. Sci. USA 93:945–950.

    Article  Google Scholar 

  • Fliesler, S. J., and Keller, K., 1995, Metabolism of [3H] farnesol to cholesterol and cholesterogenic intermediates in the living rat eye, Biochem. Biophys. Res. Commun. 210:695–702.

    Article  PubMed  CAS  Google Scholar 

  • Forman, B. M., Goode, E., Chen, J., Oro, A. E., Bradley, D. J., Perlmann, T., Noonan, D. J., Burka, L. T., McMorris, T., Lamph, W. W., Evans, R. M., and Weinberger, C., 1995, Identification of a nuclear receptor that is activated by farnesol metabolites, Cell 81:687–693.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, J. B., Oliff, A., and Kohl, N. E. 1994. Farnesyltransferase inhibitors: ras research yields a potential cancer therapeutic, Cell 77:175–178.

    Article  PubMed  CAS  Google Scholar 

  • Gil, G., Faust, J. R., Chin, D. J., Goldstein, J. L., and Brown, M. S., 1985, Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme, Cell 41: 249–258.

    Article  PubMed  CAS  Google Scholar 

  • Giron, M. D., Havel, C. M., and Watson, J. A., 1994, Mevalonate-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase function in α-toxin-perforated cells, Proc. Natl. Acad. Sci. USA 91:6398–6402.

    Article  PubMed  CAS  Google Scholar 

  • Glomset, J. A., and Farnsworth, C. C., 1994, Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu. Rev. Cell Biol. 10: 181–205.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J. L., and Brown, M. S., 1990, Regulation of the mevalonate pathway, Nature 343:425–430.

    Article  PubMed  CAS  Google Scholar 

  • Guan, G., Jiang, G., Koch, R. L., and Shechter, I., 1995, Molecular cloning and functional analysis of the promoter of the human squalene synthase gene, J. Biol. Chem. 270:21958–21965.

    Article  PubMed  CAS  Google Scholar 

  • Hampton, R. Y., and Rine, J., 1994, Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast, J. Cell Biol. 125:299–312.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. J., 1989, All ras proteins are poly-isoprenylated but only some are palmitoylated, Cell 57:1167–1177.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J. F., Paterson, H., and Marshall, C. J., 1990, A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane, Cell 63:133–139.

    Article  PubMed  CAS  Google Scholar 

  • Haug, J. S., Goldner, C. M., Yazlovitskaya, E. M., Voziyan, P. A., and Melnykovych, G., 1994, Directed cell killing (apoptosis) in human lymphoblastoid cells incubated in the presence of farnesol: effect of phosphatidylcholine, Biochim. Biophys. Acta 1223:133–140.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S., and Simoni, R. D., 1992, 3-Hydroxy-3-methylglutaryl-coenzyme A reductase and T cell receptor a subunit are differentially degraded in the endoplasmic reticulum, J. Biol. Chem. 267: 9080–9086

    PubMed  CAS  Google Scholar 

  • Inoue, H., Korenaga, T., Sagami, H., Koyama, T., and Ogura, K., 1994, Phosphorylation of farnesol by a cell-free system from botryococcus braunii, Biochem. Biophys. Res. Commun. 200:1036–1041.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, S. M, Ericsson, J., Osborne, T. F, and Edwards, P. A., 1995, NF-Y has a novel role in sterol-dependent transcription of two cholesterogenic genes, J. Biol. Chem. 270:21445–21448.

    Article  PubMed  CAS  Google Scholar 

  • Jelinek, D. F., Andersson, S., Slaughter, C. A., and Russell, W., 1990, Cloning and regulation of cholesterol 7α-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis, J. Biol. Chem. 265:8190–8197.

    PubMed  CAS  Google Scholar 

  • Josso, N., and Picard, J. Y., 1986, Anti-Mullerian hormone, Physiol. Rev. 66:1038–1090.

    PubMed  CAS  Google Scholar 

  • Kandutsch, A. A., Chen, H. W., and Heiniger, H.-J., 1978, Biological activity of some oxygenated sterols, Science 201:498–501.

    Article  PubMed  CAS  Google Scholar 

  • Keller, G. A., Pazirandeh, M., and Krisans, S., 1986, 3-Hydroxy-3-methylglutaryl coenzyme A reductase localization in rat liver peroxisomes and microsomes of control and cholestyramine-treated animals: quantitative biochemical and immunoelectron microscopical analysis, J. Cell Biol. 103: 875–886.

    Article  PubMed  CAS  Google Scholar 

  • Klausner, R. D., and Sitia, R., 1990, Protein degradation in the endoplasmic reticulum, Cell 62: 611–614.

    Article  PubMed  CAS  Google Scholar 

  • Krisans, S. K., Ericsson, J., Edwards, P. A., and Keller, G. A., 1994, Farnesyl diphosphate synthase is localized in peroxisomes, J. Biol. Chem. 269:14165–14169.

    PubMed  CAS  Google Scholar 

  • Kumagai, H., Chun, K. T., and Simoni, R. D., 1995, Molecular dissection of the role of the membrane domain in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase, J. Biol. Chem. 270:19107–19113.

    Article  PubMed  CAS  Google Scholar 

  • Liscum, L., Finer-Moore, J., Stroud, R. M., Luskey, K. L., Brown, M. S., and Goldstein, J. L., 1985, Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum, J. Biol. Chem. 260:522–530.

    PubMed  CAS  Google Scholar 

  • Maltese, W. A., 1994, Posttranslational modification of proteins by isoprenoids in mammalian cells, FASEB J. 4:3319–3328.

    Google Scholar 

  • Mangelsdorf, D. J., Umesono, K., and Evans, R. M., 1994, The retinoid receptors, in: The Retinoids: Biology, Chemistry, and Medicine, 2nd ed. (M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds.) pp. 319–349, Raven Press, New York.

    Google Scholar 

  • Marx, S. J., 1995, Vitamin D and other calciferols, in: Metabolic Basis of Inherited Disease (C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle, eds.) Vol. VII, pp. 3091–3107, McGraw-Hill Inc, New York.

    Google Scholar 

  • Mead, J. F, Alfin-Slater, R. B, Howton, D. R, and Popjak, G., 1986, Biosynthesis of cholesterol and related substances, in: Lipids, Chemistry, Biochemistry and Nutrition, pp. 295–367, Springer Science+Business Media New York.

    Google Scholar 

  • Meigs, T. E., and Simoni, R. D., 1992, Regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in permeabilized cells, J. Biol. Chem. 267:13547–13552.

    PubMed  CAS  Google Scholar 

  • Murata, M., Peränen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., and Simons, K., 1995, VIP21/caveolin is a cholesterol-binding protein, Proc. Natl. Acad. Sci. USA 92:10339–10343.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, M., Goldstein, J. L., and Brown, M. S., 1988, Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme, J. Biol. Chem. 263:8929–8937.

    PubMed  CAS  Google Scholar 

  • Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T.-T., Yu, V. L., and Miller, D. K., 1995, Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 376:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Noshiro, M., Nishimoto, M., and Okuda, K., 1990, Rat liver cholesterol 7α-hydroxylase: Pretransla-tional regulation for circadian rhythm, J. Biol. Chem. 265:10036–10041.

    PubMed  CAS  Google Scholar 

  • Ohizumi, H., Masuda, Y., Nakajo, S., Sakai, I., Ohsawa, S., and Nakaya, K., 1995, Geranylgeraniol is a potent inducer of apoptosis in tumor cells, J. Biochem. 117:11–13.

    PubMed  CAS  Google Scholar 

  • Parton, R. G., and Simons, K., 1995, Digging into caveolae, Science 269:1398–1399.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Sala, D., and Mollinedo, F., 1994, Inhibition of isoprenoid biosynthesis induces apoptosis in human promyelocytic HL-60 cells, Biochem. Biophys. Res. Commun. 199:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  • Pfiffer, S. R., Dirac-Svejstrup, A. B., and Soldati, T., 1995, Rab GDP dissociation inhibitor: putting Rab GTPases in the right place. J. Biol. Chem. 270:17057–17059.

    Article  Google Scholar 

  • Porter, J. W., and Spurgeon, S. L., 1981, Biosynthesis of Isoprenoid Compounds, pp. 1–534, Wiley, New York.

    Google Scholar 

  • Rilling, H. C., 1985, The mechanism of the condensation reactions of cholesterol biosynthesis, Biochem. Soc. Trans. 13:997–1003.

    PubMed  CAS  Google Scholar 

  • Roitelman, J., Olender, E. H., Bar-Nun, S., Dunn, W. A., Jr., and Simoni, R. D., 1992, Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum, J. Cell Biol. 117: 959–973.

    Article  PubMed  CAS  Google Scholar 

  • Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y., Glenney, J. R., and Anderson, R. G. W., 1992, Caveolin, a protein component of caveolae membrane coats, Cell 68:673–682.

    Article  PubMed  CAS  Google Scholar 

  • Sabine, J. R., 1983, in: 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (J. R. Sabine, ed.), pp. 1–257, CRC Press, Boca Raton.

    Google Scholar 

  • Sanchez, H. B., Yieh, L., and Osborne, T. F., 1995, Cooperation by sterol regulatory element-binding protein and Spl in sterol regulation of low density lipoprotein receptor gene, J. Biol. Chem. 270:1161–1169.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, W. R., Kim, R., Sterne, R., Thorner, J., Kim, S., and Rine, J., 1989, Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans, Science 245: 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Seol, W., Choi, H., and Moore, D. D., 1995, Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors, Mol. Endo. 9:72–85.

    Article  CAS  Google Scholar 

  • Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D., 1988, The membrane domain of HMG-CoA reductase confers endoplasmic reticulum localization and sterol-regulated degradation onto β-galactosidase, J. Biol. Chem. 263:6836–6841.

    PubMed  CAS  Google Scholar 

  • Spear, D. H., Ericsson, J., Jackson, S. M., and Edwards, P. A., 1994, Identification of a 6-base pair element involved in the sterol-mediated transcriptional regulation of farnesyl diphosphate synthase, J. Biol. Chem. 269:25212–25218.

    PubMed  CAS  Google Scholar 

  • Tewari, M., Quan, L. T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier G. G., Salvesen, G. S., and Dixit, V. M., 1995, Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase, Cell 81: 801–809.

    Article  PubMed  CAS  Google Scholar 

  • Thissen, J. A., and Casey, P. J., 1993, Microsomal membranes contain a high affinity binding site for prenylated peptides, J. Biol. Chem. 268:13780–13783.

    PubMed  CAS  Google Scholar 

  • Thompson, T. E., and Tillack, T. W. 1985. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu. Rev. Biophys. Biophysical Chem. 14:361–386.

    Article  CAS  Google Scholar 

  • Tontonoz, P., Kim, J. B, Graves, R. A., and Spiegelman, B. M., 1993, ADD1: A novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation, Mol. Cell. Biol. 13:4753–4759.

    PubMed  CAS  Google Scholar 

  • Ullrich, O., Horiuchi, H., Bucci, C., and Zerial, M., 1994, Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange, Nature 368:157–160.

    Article  PubMed  CAS  Google Scholar 

  • Voziyan, P. A., Haug, J. S., and Melnykovych, G., 1995, Mechanism of farnesol cytotoxicity: further evidence for the role of PKC-dependent signal transduction in farnesol-induced apoptotic cell death, Biochem. Biophys. Res. Commun. 212:479–486.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Briggs, M. R., Hua, X., Yokoyama, C., Goldstein, J. L., and Brown, M. S., 1993, Nuclear protein that binds sterol regulatory element of LDL receptor promoter. II. Purification and characterization, J. Biol. Chem. 268:14497–14504.

    PubMed  CAS  Google Scholar 

  • Wang, X., Sato, R., Brown, M. S., Hua, X., and Goldstein, J. L., 1994, SREBP-1, a membrane-bound transcription factor released by a sterol-regulated proteolysis, Cell 77:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Pai, J. T., Wiedenfeld, E. A., Medina, J. C., Slaughter, C. A., Goldstein, J. L., and Brown, M. S., 1995, Purification of an interleukin-1β converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains, J. Biol. Chem. 270:18044–18050.

    Article  PubMed  CAS  Google Scholar 

  • Wedegaertner, P. B., Wilson, P. T., and Bourne, H. R. 1995. Lipid modifications of trimeric G proteins. J. Biol. Chem. 270:503–506.

    Article  PubMed  CAS  Google Scholar 

  • Whyte, M., and Evan, G. 1995. The last cut is the deepest, Nature 376:17–18.

    Article  PubMed  CAS  Google Scholar 

  • Williams, G. R., 1994, Solving the specificity puzzle, Nature 370:330–331.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, H. D., Allen, J. M., and Lennarz, W. J., 1988, 3-Hydroxy-3-methylglutaryl-coenzyme A reductase of the sea urchin embryo, J. Biol. Chem. 263:18411–18418.

    PubMed  CAS  Google Scholar 

  • Yao, T.-P, Segraves, W. A., Oro, A. E., McKeown, M., and Evans, R. M., 1992, Drosophila ultra-spiracle modulates ecdysone receptor function via heterodimer formation, Cell 71:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, C., Wang, X., Briggs, M. R, Admon, A., Wu, J., Hua, X., Goldstein, J. L, and Brown M. S., 1993, SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene, Cell 75:187–197.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jackson, S.M., Ericsson, J., Edwards, P.A. (1997). Signaling Molecules Derived from the Cholesterol Biosynthetic Pathway. In: Bittman, R. (eds) Cholesterol. Subcellular Biochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5901-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5901-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7707-8

  • Online ISBN: 978-1-4615-5901-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics