Skip to main content

MADS-Domain Transcription Factors and their Accessory Proteins (TCFS)

Nuclear Targets for Growth Control Signals

  • Chapter
Cancer Genes

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 7))

  • 49 Accesses

Abstract

Tightly regulated gene activity provides the molecular basis for ensuring properly controlled growth and division of eukaryotic cells. A comprehensive understanding of the regulatory mechanisms that direct gene activity of both proliferating and non-proliferating cells will provide important insight into the origin and causes of proliferative disorders in human pathology, including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.R. Herschman, Primary response genes induced by growth factors and tumor promoters. Annu. Rev. Biochem., 60: 281–319 (1991)

    Article  PubMed  CAS  Google Scholar 

  2. C.J. Marshall, MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dey., 4: 82–89 (1994)

    Article  CAS  Google Scholar 

  3. D.O. Morgan, Principles of CDK regulation. Nature, 374: 131–134 (1995)

    Article  PubMed  CAS  Google Scholar 

  4. Z. Schwarz-Sommer, P. Huijser, W. Nacken, H. Saedler and H. Sommer, Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 250: 931–936 (1990)

    Article  PubMed  CAS  Google Scholar 

  5. P. Shore and A.D. Sharrocks, The MADS-box family of transcription factors. Sur: J. Biochern., 229: 1–13 (1995)

    Article  CAS  Google Scholar 

  6. R. Janknecht, M.A. Cahill and A. Nordheim, Signal integration at the c-fos promoter. Carcinogenesis, 16: 443–450 (1995)

    Article  PubMed  CAS  Google Scholar 

  7. M.A. Cahill, R. Janknecht and A. Nordheim, Signal uptake by the c-fos serum response element. In: Inducible Gene Expression(Baeuerle, P. A., eds) Vol. 2, pp. 39–73, Birkhäuser Press, Boston (1995)

    Chapter  Google Scholar 

  8. M. Sheng and M. Greenberg, The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron, 4: 477–485 (1990)

    Article  PubMed  CAS  Google Scholar 

  9. R. Treisman, The serum response element. Trends Biochem. Sci., 17: 423–426 (1992)

    Article  PubMed  CAS  Google Scholar 

  10. C. Norman, M. Runswick, R. Pollock and R. Treisman, Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell, 55: 989–1003 (1988)

    Article  PubMed  CAS  Google Scholar 

  11. R. Treisman, Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell, 46: 567–574 (1986)

    Article  PubMed  CAS  Google Scholar 

  12. L. Pellegrini, S. Tan and T.J. Richmond, Structure of serum response factor core bound to DNA. Nature, 376: 490–498 (1995)

    Article  PubMed  CAS  Google Scholar 

  13. R. Janknecht, R.A. Hipskind, T. Houthaeve, A. Nordheim and H.G. Stunnenberg, Identification of multiple SRF N-terminal phosphorylation sites affecting DNA binding properties. EMBO J., 11: 1045–1054 (1992)

    PubMed  CAS  Google Scholar 

  14. R.M. Marais, J.J. Hsuan, C. McGuigan, J. Wynne and R. Treisman, Casein kinase II phosphorylation increases the rate of serum response factor-binding site exchange. EMBO.J., 11: 97–105 (1992)

    PubMed  CAS  Google Scholar 

  15. P.E. Shaw, H. Schröter and A. Nordheim, The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell, 56: 563–572 (1989)

    Article  PubMed  CAS  Google Scholar 

  16. R.A. Hipskind, V.N. Rao, C.G.F. Mueller, E.S.P. Reddy and A. Nordheim, Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF Nature, 354: 531–534 (1991)

    Article  PubMed  CAS  Google Scholar 

  17. M. Lopez, P. Oettgen, Y. Akbarali, U. Dendorfer and T.A. Liberman, Erp, a new mwmber of the ets transcription factor/oncoprotein family: cloning, characterization, and differential expression during B-lymphocyte development. Mol. Cell. Biol., 14: 3292–3309 (1994)

    PubMed  CAS  Google Scholar 

  18. S. Dalton and R. Treisman, Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell, 68: 597–612 (1992)

    Article  PubMed  CAS  Google Scholar 

  19. A. Giovane, A. Pintzas, S.-M. Maria, P. Sobieszczuk and B. Wasylyk, Net, a new etstranscription factor that is activated by Ras. Genes Dey., 8: 1502–1513 (1994)

    Article  CAS  Google Scholar 

  20. R. Treisman, Ternary complex factors: growth factor regulated transcriptional activators. Curi. Opin. Genet. Dev., 4: 96–101 (1994)

    Article  CAS  Google Scholar 

  21. H. König, Cell-type specific multiprotein complex formation over the c-fosserum response element in vivo: ternary complex formation is not required for the induction of c-fos. Nucl. Acids Res., 19: 3607–3611 (1991)

    Article  PubMed  Google Scholar 

  22. R.E. Herrera, P.E. Shaw and A. Nordheim, Occupation of the c-fos serum response element in vivoby a multi-protein complex is unaltered by growth factor induction. Nature, 340: 68–70 (1989)

    Article  PubMed  CAS  Google Scholar 

  23. R. Marais, J. Wynne and R. Treisman, The SRF accessory protein Elk-I contains a growth factor-regulated transcriptional activation domain. Cell, 73: 381–393 (1993)

    Article  PubMed  CAS  Google Scholar 

  24. R. Janknecht, W.H. Ernst, V. Pingoud and A. Nordheim, Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J., 12: 5097–5104 (1993)

    PubMed  CAS  Google Scholar 

  25. R. Graham and M. Gilman, Distinct protein targets for signals acting at the c-fos serum response element. Science, 251: 189–192 (1991)

    Article  PubMed  CAS  Google Scholar 

  26. F.-E. Johansen and R. Prywes, Two pathways for serum regulation of the c-fos serum response element require specific sequence elements and a minimal domain of serum response factor. Mol. Cell. Biol., 14: 5920–5928 (1994)

    Article  PubMed  CAS  Google Scholar 

  27. C.S. Hill, J. Wynne and R. Treisman, The Rho family GTPases RhoA, Racl, and CDC42Hs regulate transcriptional activation by SRF. Cell, 81: 1159–1170 (1995)

    Article  PubMed  CAS  Google Scholar 

  28. C.S. Hill, J. Wynne and R. Treisman, Serum-regulated transcription by Serum Response Factor (SRF): a novel role for the DNA binding domain. EMBO J, 13: 5421–5432 (1994)

    PubMed  CAS  Google Scholar 

  29. C.S. Hill, R. Marais, S. John, J. Wynne, S. Dalton and R. Treisman, Functional analysis of a growth factor-responsive transcription factor complex. Cell, 73: 395–406 (1993)

    Article  PubMed  CAS  Google Scholar 

  30. H.G. Gille, A.D. Sharrocks and P.E. Shaw, Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at the c-fos promotor. Nature, 358: 414–417 (1992)

    Article  PubMed  CAS  Google Scholar 

  31. R. Zinck, R.A. Hipskind, V. Pingoud and A. Nordheim. c-fos transcriptional activation and repression correlate temporally with the phosphorylation status of TCF. EMBO J., 12: 2377–2387 (1993)

    PubMed  CAS  Google Scholar 

  32. V.M. Rivera, C.K. Miranti, R.P. Misra, D.D. Ginty, R.-H. Chen, J. Blenis and M.E. Greenberg, A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol. Cell. Biol., 13: 6260–6273 (1993)

    PubMed  CAS  Google Scholar 

  33. R.A. Hipskind, M. Baccarini and A. Nordheim, Transient activation of RAF-1, MEK, and ERK2 coincides kinetically with ternary complex factor phoshorylation and immediate-early gene promoter activity in vivo. Mol. Cell. Biol., 14: 6219–6231 (1994)

    Article  PubMed  CAS  Google Scholar 

  34. J. Arias, A.S. Alberts, P. Brindle, F.X. Claret, T. Smeal, M. Karin, J. Feramisco and M. Montminy, Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature, 370: 226–229 (1994)

    Article  PubMed  CAS  Google Scholar 

  35. M. Rim, S.A. Qureshi, D. Gius, J. Nho, V.P. Sukhatme and D.A. Foster, Evidence that activation of the Egr-I promoter by v-Raf involves serum response elements. Oncogene, 7: 2065–2068 (1992)

    PubMed  CAS  Google Scholar 

  36. B.V. Latinkic and L.F. Lau, Transcriptional activation of the immediate early gene pip92 by serum growth factors requires both Ets and CArG-like elements. J. Biol. Chem., 269: 23163–23170 (1994)

    PubMed  CAS  Google Scholar 

  37. T. Hayes, P. Sengupta and B. Cochrane, The human c-fos serum response factor and the yeast factors GRM/PRTF have related DNA-binding specificities. Genes Dev, 2: 1713–1722 (1988)

    Article  PubMed  CAS  Google Scholar 

  38. E. Jarvis, K. Clark and G. Sprague, The yeast transcription activator PRTF, a homolog of the mammalian serum response factor, is encoded by the MCMI gene. Genes Dev., 3: 936–945 (1989)

    Article  PubMed  CAS  Google Scholar 

  39. S. Passmore, R. Elble and B. Tye, A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes Dev., 3: 921–935 (1989)

    Article  PubMed  CAS  Google Scholar 

  40. H. Sommer, J. Beltrán, P. Huijser, H. Pape, W. Lönnig, H. Saedler and Z. Schwarz-Sommer, Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homolgy to transcription factors. EMBOJ., 9: 605–613 (1990)

    Article  Google Scholar 

  41. M. Yanofsky, H. Ma, J. Bowman, N. Drews, K. Feldman and E. Meyerowitz, The protein encoded by the Arabidopsis homeotic gene agmnous resembles transcription factors. Nature, 346: 35–39 (1990)

    Article  PubMed  CAS  Google Scholar 

  42. H. Ma. M.F. Yanofsky and E.M. Meyerowitz, AGLI-AGL6, an Arahidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev., 5: 484–495 (1991)

    Article  PubMed  CAS  Google Scholar 

  43. M. Affolter, J. Montagne, U. Walldorf, J. Groppe, U. Kloter and M. LaRosa, The DrosophilaSRF homolog is expressed in a subset of tracheal cells and maps within a genomic region required for tracheal development. Development, 120: 743–753 (1994)

    PubMed  CAS  Google Scholar 

  44. L. Boxer, R. Prywes, R. Roeder and L. Kedes, The sarcomeric actin CArG binding factor is indistuinguishable from the c-fos serum response factor. Mol. Cell. Biol., 9: 515–522 (1989)

    PubMed  CAS  Google Scholar 

  45. K.T. Fujiwara, K. Ashida, H. Nishina, H. Iba, H. Miyajima, M. Nishizawa and S. Kawai, The chicken c-fos gene: cloning and nucleotide sequence analysis. J. Virol., 61: 4012–4018 (1987)

    PubMed  CAS  Google Scholar 

  46. Z. Liu, B. Moav, A. Faras, K. Guise, A. Kapuscinski and P. Hackett, Functional analysis of elements affecting expression of the β-actin gene of Carp. Mol. Cell. Biol., 10: 3432–3440 (1990)

    PubMed  CAS  Google Scholar 

  47. M. Taylor, R. Treisman, N. Garret and T. Mohun, Muscle-specific (CArG) and serum responsive (SRE) promoter elements are functionally interchangeable in Xenopus embryos and mouse fibroblasts. Development, 106: 67–78 (1989)

    PubMed  CAS  Google Scholar 

  48. T.J. Mohun Chambers, A.E., Towers, N., Taylor, M.V., Expression of genes encoding the transcription factor SRF during development of Xenopus laevis: identification of a CArG box-binding activity as SRF. EMBOJ., 10: 933–940 (1991)

    Google Scholar 

  49. R. Pollock and R. Treisman, Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev., 5: 2327–2341 (1991)

    Article  PubMed  CAS  Google Scholar 

  50. A.E. Chambers, S. Kotecha, N. Towers and T. Mohun, Muscle-specific expression of SRF-related genes in the early embryo of Xenopus laevus. EMBO J., 11: 4981–4991 (1992)

    PubMed  CAS  Google Scholar 

  51. Y.-Y. Yu, R.E. Breitbart, L.B. Smoot, Y. Lee, V. Mandavi and B. Nadal-Ginard, Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev., 6: 1783–1798 (1992)

    Google Scholar 

  52. G. Ammerer, Sex, stress and integrity: the importance of MAP kinases in yeast. Curr Opin. Genet. Dev, 4: 90–95 (1994)

    Article  PubMed  CAS  Google Scholar 

  53. M. de Rijka, S. Seneca, B. Punyammalee, N. Glansdorff and M. Crabeel, Characterization of the DNA target site for the yeast ARGR regulatory complex, a sequence able to mediate repression or induction by arginine. Mol. Cell. Biol., 12: 68–81 (1992)

    Google Scholar 

  54. S.I. Reed, Pheremone signaling pathways in yeast. Curr. Opin. Gen. Dey., 1: 391–396 (1991)

    Article  CAS  Google Scholar 

  55. J.W. Dolan and S. Fields, Cell-type-specific transcription in yeast. Biochim. Biophys. Acta, 1088: 155–169 (1991)

    Article  PubMed  CAS  Google Scholar 

  56. P.E. Shaw, Ternary complex formation over the c-fos serum response element: p62TCF exhibits dual component specificity with contacts to DNA and an extended structure in the DNA-binding domain of p67SRF EMBOJ., 11: 3011–3019 (1992)

    CAS  Google Scholar 

  57. C.G.F. Mueller, Nordheim, A., A protein domain conserved between yeast MCM1 and human SRF directs ternary complex formation. EMBO J., 10: 4219–4229 (1991)

    PubMed  CAS  Google Scholar 

  58. D. Lydall, G. Ammerer and K. Nasmyth, A new role for MCMI in yeast: cell cycle regulation of SW15 transcription. Genes Dey., 5: 2405–2419 (1991)

    Article  CAS  Google Scholar 

  59. R. Pollock and R. Treisman, A sensitive method for the determination of protein-DNA binding specificities. Nucl. Acids Res.. 18: 6197–6204 (1990)

    Article  PubMed  CAS  Google Scholar 

  60. J. Wynne and R. Treisman, SRF and MCMI have related but distinct DNA binding specificities. Nucl. Acids Res.. 20: 3297–3303 (1992)

    Article  PubMed  CAS  Google Scholar 

  61. A.D. Sharrocks, F. von Hesler and P.E. Shaw, The identification of elements determining the different DNA binding specificities of the MADS box proteins p67SRF and RSRFC4. Nucl. Acids Res.. 21: 215–221 (1993)

    Article  PubMed  CAS  Google Scholar 

  62. C. Gauthier-Rouvière, J.-C. Cavadore, J.-M. Blanchard, N.J.C. Lamb and A. Fernandez, p67SRF is a constitutive nuclear protein implicated in the modulation of genes required throughout the GI period. Cell Regulation, 2: 575–588 (1991)

    PubMed  Google Scholar 

  63. S.-H. Liu, H.-H. Lee, J.-J. Chen, C.-F. Chuang and S.-Y. Ng, Serum response element-regulated transcription in the cell cycle: possible correlation with microtubule reorganization. Cell Growth and Differentiation, 5: 447–455 (1994)

    PubMed  CAS  Google Scholar 

  64. R. Janknecht and A. Nordheim, Gene regulation by Ets proteins. Biochim. Biophys. Acta, 1155: 346–356 (1993)

    PubMed  CAS  Google Scholar 

  65. K. Macleod, Leprince, D., Stehelin, D., The etsgene family. Trends Biochem. Sci., 17: 251–256 (1992)

    Article  PubMed  CAS  Google Scholar 

  66. B. Wasylyk, S.L. Hahn and A. Giovane, The Ets family of transcription factors. Elm. J. Biochem., 211: 7–18 (1993)

    Article  CAS  Google Scholar 

  67. K. Giese, C. Kingsley, J.R. Kirschner and R. Grosschedl, Assembly and function of a TCRα enhancer complex is dependent on LEF- I -induced DNA bending and multiple protein-protein interactions. Genes and Dev, 9: 995–1008 (1995)

    Article  PubMed  CAS  Google Scholar 

  68. V.N. Rao, K. Hueber, M. Isobe, A. Ar-Rushdi, C.M. Croce and E.S.P. Reddy, elk, tissue specific ets-related genes on chromosomes X and 14 near translocation breakpoints. Science, 244: 60–79 (1989)

    Article  Google Scholar 

  69. M.A. Price, A.E. Rogers and R. Treisman, Comparative analysis of the ternary complex factors Elk-1, SAP-la and SAP-2 (ERP/NET). EMBOJ, 14: 2589–2601 (1995)

    CAS  Google Scholar 

  70. R. Janknecht and A. Nordheim, Elk-1 protein domains required for direct and SRF-assisted DNA-binding. Nucl. Acids Res., 20: 3317–3324 (1992)

    Article  PubMed  CAS  Google Scholar 

  71. R. Shore and A.D. Sharrocks, The transcription factors Elk-1 and serum response factor interact by direct protein-protein contacts mediated by a short region of Elk-1. Mol. Cell. Biol., 14: 3283–3291 (1994)

    PubMed  CAS  Google Scholar 

  72. R. Treisman, R. Marais and J. Wynne, Spatial flexibility in ternary complexes between SRF and its accessory proteins. EMBOJ., 11: 4631–4640 (1992)

    CAS  Google Scholar 

  73. M. Kortenjann, O. Thomae and P.E. Shaw, Inhibition of v-raf-dependent c-fos expression and transformation by a kinase-defective mutant of the mitogen-activated protein kinase Erk2. Mol. Cell. Biol, 14: 4815–4824 (1994)

    PubMed  CAS  Google Scholar 

  74. R.A. Hipskind, D. Biischer, A. Nordheim and M. Baccarini, Ras/MAP kinase-dependent and -independent signaling pathways target distinct ternary complex factors. Genes Dev, 8: 1803–1816 (1994)

    Article  PubMed  CAS  Google Scholar 

  75. C. Sachsenmaier, A. Radler-Pohl, R. Zinck, A. Nordheim, P. Herrlich and H.J. Rahmsdorf, Involvement of growth factor receptors in the mammalian UVC response. Cell. 78: 963–972 (1994)

    Article  PubMed  CAS  Google Scholar 

  76. M. Karin, Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curt: Opinion Cell Biol., 6: 415–424 (1994)

    Article  CAS  Google Scholar 

  77. R. Crespo, Xu, N., Simonds, W.F., Gutkind, J.S., Ras-dependent activation of MAP kinase pathway mediated by G-protein βγ subunits. Nature, 369: 418–420 (1994)

    Article  PubMed  CAS  Google Scholar 

  78. T. Kallunki, B. Su, I. Tsigelney, H.K. Sluss, B. Dérijard, G. Moore, R. Davis and M. Karin, JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes and Dev., 8: 2996–3007 (1994)

    Article  PubMed  CAS  Google Scholar 

  79. B. Dérijard, M. Hibi, I.-H. Wu, T. Barret, B. Su, T. Deng, M. Karin and R.J. Davis, JNK1: A Protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 76: 1025–1037 (1994)

    Article  PubMed  Google Scholar 

  80. J.M. Kyriakis, R Banerjee, E. Nikolakaki, T. Dal, E.A. Ruble, M.F. Ahmad, J. Avruch and J.R. Woodgett, The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 369: 156–160 (1994)

    Article  PubMed  CAS  Google Scholar 

  81. I. Sánchez, R.T. Hughes, B.J. Mayer, K. Yee, J.R. Woodget, J. Avruch, J.M. Kyriakis and L.I. Zon, Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature, 372: 794–798 (1994)

    PubMed  Google Scholar 

  82. M. Yan, T. Dal, J.C. Deak, J.M. Kyriakis, L.I. Zon, J.R. Woodgett and D.J. Templeton, Activation of stress-activated protein kinase by MEKKI phosphorylation of its activator SEKI. Nature, 372: 798–800 (1994)

    PubMed  CAS  Google Scholar 

  83. A. Lin, A. Minden, H. Martinetto, F.X. Claret, C. Lange-Carter, F. Mercurio, G.L. Johnson and M. Karin, Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science, 268: 286–290 (1995)

    Article  PubMed  CAS  Google Scholar 

  84. B. Dérijard, J. Raingeaud, T. Barret, I.H. Wu, J. Han, R.J. Ulevitch and R.J. Davis, Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science, 267: 682–685 (1995)

    Article  PubMed  Google Scholar 

  85. A. Minden, A. Lin, M. McMahon, C. Lange-Carter, B. Dérijard, R.J. Davis, G.L. Johnson and M. Karin, Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science, 266: 1719–1723 (1994)

    Article  PubMed  CAS  Google Scholar 

  86. N.W. Freshney, L. Rawlinson, F. Guesdon, E. Jones, S. Cowley, J. Hsuan and J. Saklatvala, Interleukin-1 activates a novel protein kinase cascade that results in phosphorylation of Hsp27. Cell, 78: 1039–1049 (1994)

    Article  PubMed  CAS  Google Scholar 

  87. J. Han, J.D. Lee, L. Bibbs and R.J. Ulevitch, A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 265: 808–811 (1994)

    Article  PubMed  CAS  Google Scholar 

  88. J.C. Lee, J.D. Laydon, P.C. McDonnell, T.F. Gallagher, S. Kumar, D. Green, D. McNulty, M.J. Blumenthal, J.R. Heys and S.W. Landvatter, A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 372: 739–746 (1994)

    Article  PubMed  CAS  Google Scholar 

  89. J. Rouse, R. Cohen, S. Trigon, M. Morange, A. Alonso-Llamazares, D. Zamanillo, T. Hunt and A.R. Nebreda, A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of HSP27. Cell, 78: 1027–1037 (1994)

    Article  PubMed  CAS  Google Scholar 

  90. E. Cano, C.A. Hazzalin and L.C. Mahadevan, Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Mol. Cell. Biol., 14: 7352–7362 (1994)

    PubMed  CAS  Google Scholar 

  91. L.C. Mahadevan and D.R. Edwards, Signalling and superinduction. Nature, 349: 747–748 (1991)

    Article  PubMed  CAS  Google Scholar 

  92. H. van Dam, D. Wilhelm, I. Herr, A. Steffen, P. Herrlich and R Angel, ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J, 14: 1798–1811 (1995)

    PubMed  Google Scholar 

  93. M. Kracht, O. Truong, N.F. Tony, M. Shiroo and J. Saklatvala, Interleukin la activates two forms of p54α mitogen-activated protein kinase in rabbit liver. J. Exp. Med., 180: 2017–2025 (1994)

    Article  PubMed  CAS  Google Scholar 

  94. R. Zinck, M.A. Cahill, M. Kracht, C. Sachsenmaier, R. Hipskind and A. Nordheim, Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol. Cell. Biol., 15: 4930–4938 (1995)

    PubMed  CAS  Google Scholar 

  95. A.J. Whitmarsh, R. Shore, A.D. Sharrocks and R.J. Davis, Integration of MAP kinase signal transduction pathways at the serum response element. Science, 269: 403–407 (1995)

    Article  PubMed  CAS  Google Scholar 

  96. J. Raingeaud, S. Gupta, J.S. Rogers, M. Dickens, J. Han, R.J. Ulevitch and R.J. Davis, Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem., 270: 7420–7426 (1995)

    Article  PubMed  CAS  Google Scholar 

  97. S. Gupta, D. Campbell, B. Dérijard and R.J. Davis, Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 267: 389–393 (1995)

    Article  PubMed  CAS  Google Scholar 

  98. H. van Dam, M. Duyndam, R. Rottier, A. Bosch, L. de Vries-Smits, P. Herrlich, A. Zantema, R. Angel and A.J. van der Eb, Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid E1Aprotein. EMBO J., 12: 479–487 (1993)

    PubMed  Google Scholar 

  99. P. Angel and M. Karin, The role of Jun, Fos, and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta.. 1072: 129–157 (1991)

    PubMed  CAS  Google Scholar 

  100. R. Treisman and G. Ammerer, The SRF and MCM1 transcription factors. Curr. Opin. Genet. Dev., 2: 221–226 (1992)

    Article  PubMed  CAS  Google Scholar 

  101. M. Maher, F. Cong, D. Kindelberger, K. Nasmyth and S. Dalton, Cell cycle-regulated transcription of the CLB2 gene is dependent on Mcml and a ternary complex factor. Mol. Cell. Biol., 15: 3129–3137 (1995)

    PubMed  CAS  Google Scholar 

  102. M. Maher, F. Cong, D. Kindelberger, K. Nasmyth and S. Dalton, Cell cycle-regulated transcription of the CLB2 gene is dependent on Mcml and a ternary complex factor. Mol. Cell. Biol., 15: 3129–3137 (1995)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Cahill, M.A., Althöfer, H., Nordheim, A. (1996). MADS-Domain Transcription Factors and their Accessory Proteins (TCFS). In: Mihich, E., Housman, D. (eds) Cancer Genes. Pezcoller Foundation Symposia, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5895-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5895-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45482-0

  • Online ISBN: 978-1-4615-5895-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics