Skip to main content

Reflections on the Carotid Nerve Sensory Discharge and Coupling Between Glomus Cells

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 410))

Abstract

In most sensory receptors of vertebrates, the action potentials of myelinated fibers originate from the first node of Ranvier, closest to the nerve terminals (Loewenstein & Rathkamp, 1958). The spike origin is not established in receptors innervated by unmyelinated (C) fibers, but probably occurs in the fiber at some distance from the endings (Edwards & Ottoson, 1958; Ringham, 1971). The carotid body glomus cells are innervated by myelinated (A) and unmyelinated (C) fibers from the carotid nerve (Fidone & Sato, 1969), although it is not known where the action potentials originate in either type of fiber. These uncertainties are due to a large extent to the complex morphology of the carotid body innervation. A single carotid nerve fiber divides extensively to innervate up to 20 glomus cells (Eyzaguirre & Gallego, 1975; Kondo, 1976) forming what is, presumably, the sensory unit. Moreover, glomus cells may be innervated more than once by the same fiber, and some cells are innervated by more than one carotid nerve fiber (De Castro, 1940; 1951). Figure 1 is a composite drawing from De Castro’s original microscope slides examined by Eyzaguirre & Gallego (1975). Axon 1 innervates glomeruli A and C. Cells marked by dots in glomerulus A are innervated by branches from axons 1 and 2. As shown below, this complex innervation pattern has to be considered when analyzing the origin of the sensory discharge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abudara V & Eyzaguirre C (1994) Electrical coupling between cultured glomus cells of the rat carotid body: observations with current and voltage clamping. Brain Res 664: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Alcayaga J & Eyzaguirre C (1990) Electrophysiological evidence for the reconstitution of chemosensory units in co-cultures of carotid body and nodose ganglion neurons. Brain Res 534: 324–328

    Article  PubMed  CAS  Google Scholar 

  • Baron M & Eyzaguirre C (1977) Effects of temperature on some membrane characteristics of carotid body cells. Am J Physiol 233: C35–C46

    PubMed  CAS  Google Scholar 

  • Biscoe TJ & Taylor A (1963) The discharge pattern recorded in chemoreceptor afferent fibres from the cat carotid body with normal circulation and during perfusion. J Physiol, London 168: 332–344

    CAS  Google Scholar 

  • De Castro F (1940) Nuevas observaciones sobre la inervación de la región carotídea. Los quimio-y preso-recep-tores. Trab Lab Invest Biol Univ Madrid 32: 297–385

    Google Scholar 

  • De Castro F (1951) Sur la structure de la synapse dans les chemocepteurs: leur mécanisme d’excitation et rôle dans la circulation sanguine locale. Acta Physiol Scand 22: 14–43

    Article  Google Scholar 

  • Dinger B, Stensaas LJ & Fidone S (1985) Cat carotid bodies reinnervated by normal or foreign nerves. Brain Res 344:21–32

    Article  PubMed  CAS  Google Scholar 

  • Edwards C & Ottoson D (1958) The site of impulse initiation in a nerve cell of a crustacean stretch receptor. J Physiol, London 143: 138–148

    CAS  Google Scholar 

  • Eyzaguirre C & Abudara V (1995) Possible role of coupling between glomus cells in carotid body chemorecep-tion. Biol Signals 4: 263–270

    Article  PubMed  CAS  Google Scholar 

  • Eyzaguirre C & Gallego A (1975) An examination of De Castro’s original slides. In: Purves MJ (ed) The Peripheral Arterial Chemoreceptors. London: Cambridge Univ Press. pp 1–23

    Google Scholar 

  • Eyzaguirre C & Koyano H (1965) Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J Physiol, London 178: 385–409

    CAS  Google Scholar 

  • Fidone SJ & Sato A (1969) A study of chemoreceptor and baroreceptor A and C-fibres in the cat carotid nerve. J Physiol, London 205: 527–548

    CAS  Google Scholar 

  • González C, Almaraz L, Obeso A & Rigual R (1994) Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiol Rev 74: 829–898

    PubMed  Google Scholar 

  • Hayashida Y, Koyano H & Eyzaguirre C (1980) An intracellular study of chemosensory fibers and endings. J Neurophysiol 44: 1077–1088

    PubMed  CAS  Google Scholar 

  • Kondo H (1976) Innervation of the carotid body of the adult rat. Cell Tiss Res 173: 1–15

    CAS  Google Scholar 

  • Loewenstein WR & Rathkamp R (1958) The sites for mechano-electric conversion in a pacinian corpuscle. J Gen Physiol 41: 1245–1265

    Article  PubMed  CAS  Google Scholar 

  • McDonald DM (1981) Peripheral chemoreceptors: Structure-function relationships of the carotid body. In: Hornbein TF & Lenfant C (eds) Lung Biology in Health and Disease, vol 17: Regulation of Breathing. New York: Dekker. pp 105–320

    Google Scholar 

  • Meda P, Bruzzone R, Chanson M & Bosco D (1988) Junctional coupling and secretion of pancreatic acinar cells. In: Hertzberg GL & Johnson RG (eds) Gap Junctions. Modern Cell Biology, vol 7. New York: Liss. pp 353–364

    Google Scholar 

  • Monti-Bloch L & Eyzaguirre C (1990) Effects of different stimuli and transmitters on glomus cell membranes and intercellular communications. In: Eyzaguirre C, Fidone SJ, Fitzgerald RS, Lahiri S & McDonald DM (eds) Arterial Chemoreception. New York: Springer. pp 157–167

    Chapter  Google Scholar 

  • Monti-Bloch L, Abudara V & Eyzaguirre C (1993) Electrical communication between glomus cells of the rat carotid body. Brain Res 622: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Neyton J & Trautmann A (1986) Acetylcholine modulation of the conductance of intercellular junctions between rat lacrimal cells. J Physiol, London 377: 283–295

    CAS  Google Scholar 

  • Ringham GL (1971) Origin of nerve impulse in slowly adapting stretch receptor of crayfish. J Neurophysiol 34: 773–784

    PubMed  CAS  Google Scholar 

  • Spray DC, Sáez JC, Burt JM, Watanabe T, Reid LM, Hertzberg EL & Bennett MVL (1988) Gap junctional conductance: multiple sites of regulation. In: Hertzberg EL & Johnson RG (eds) Gap Junctions. Modern Cell Biology, vol 7. New York: Liss. pp 227–244

    Google Scholar 

  • Zapata P, Hess A & Eyzaguirre C (1969) Reinnervation of carotid body and sinus with superior laryngeal nerve fibers. J Neurophysiol 32: 215–228

    PubMed  CAS  Google Scholar 

  • Zapata P, Stensaas LJ & Eyzaguirre C (1976) Axon regeneration following a lesion of the carotid nerve: Electrophysiological and ultrastructural observations. Brain Res 113: 235–253

    Article  PubMed  CAS  Google Scholar 

  • Zhong H & Nurse C (1996) Co-cultures of rat petrosal neurons and carotid body type 1 cells: A model for studying chemosensory mechanisms. Adv Exp Med Biol 410: 189–193

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eyzaguirre, C., Abudara, V. (1996). Reflections on the Carotid Nerve Sensory Discharge and Coupling Between Glomus Cells. In: Zapata, P., Eyzaguirre, C., Torrance, R.W. (eds) Frontiers in Arterial Chemoreception. Advances in Experimental Medicine and Biology, vol 410. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5891-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5891-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7702-3

  • Online ISBN: 978-1-4615-5891-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics