Factors Contributing to Enhanced Fatigue-Resistance in Low-Frequency Stimulated Muscle

  • Dirk Pette


The ability for sustained contractile activity of skeletal muscle is generally assumed to correlate with a high capacity of aerobic-oxidative energy metabolism. This notion was derived from the observation that muscle fibres differing in their mitochondrial enzyme activities display distinct fatigue properties (4,7,18,22). Motor units composed of fasttwitch glycolytic (FG) fibres are fast-fatiguable, whereas motor units composed of socalled fast-twitch oxidative (FOG) or slow-twitch oxidative (SO) fibres are less fatigable or resistant to fatigue, respectively. Additional evidence in support of this notion has emerged from studies on fast-twitch muscles exposed to chronic electrical stimulation (for review see (25)). A major effect of maximally forced contractile activity by chronic lowfrequency stimulation (CLFS) is that stimulated muscles display pronounced increases in enzyme activities of terminal substrate oxidation (Fig. 1) and become non-fatigable (24,25).


Motor Unit Tibialis Anterior Extensor Digitorum Longus Tibialis Anterior Muscle Mitochondrial Enzyme Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergström, J., L. Hermansen, E. Hultman, and B. Saltin. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 71: 140–150, 1967.PubMedCrossRefGoogle Scholar
  2. 2.
    Bottinelli, R., M. Canepari, C. Reggiani, and G. J. M. Stienen. Myofibrillar ATPase activity during isometric contraction and isomyosin composition in rat single skinned muscle fibres. J. Phvsiol. (Lond.) 481: 663–675, 1994.Google Scholar
  3. 3.
    Brown, M. D., M. A. Cotter, O. Hudlická, and G. Vrbová. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflügers Arch. Europ. J. Physiol. 361: 241–250, 1976.CrossRefGoogle Scholar
  4. 4.
    Burke, R. E., D. N. Levine, F. E. Zajac, P. Tsairis, and W. K. Engel. Mammalian motor units: Physiological-histochemical correlation in three types in cat gastrocnemius. Science 174: 709–712, 1971.PubMedCrossRefGoogle Scholar
  5. 5.
    Cadefau, J. A., J. Parra, R. Cusso, G. Heine, and D. Pette. Responses of fatigable and fatigue-resistant fibers of rabbit muscle to low-frequency stimulation. Pflügers Arch. Europ. J. Physiol. 424: 529–537, 1993.CrossRefGoogle Scholar
  6. 6.
    Clausen, T. Regulation of active Na+-K+ transport in skeletal muscle. Physiol. Rev. 66: 542–580, 1986.PubMedGoogle Scholar
  7. 7.
    Edström, L. and E. Kugelberg. Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J. Neurol. Neurosurg. Psychiatry 31: 424–433, 1968.PubMedCrossRefGoogle Scholar
  8. 8.
    Everts, M. E., T. Lomo, and T. Clausen. Changes in K+, Na+ and calcium contents during in vivo stimulation of rat skeletal muscle. Acta Physiol. Scand. 147: 357–368. 1993.PubMedCrossRefGoogle Scholar
  9. 9.
    Green, H. J., M. Ball-Burnett, E. R. Chin, L. Dux, and D. Pette. Time dependent increases in Na+,K+-AT-Pase concentration of low-frequency stimulated rabbit muscle. FEBS Lett. 310: 129–131, 1992.PubMedCrossRefGoogle Scholar
  10. 10.
    Green, H. J., S. Düsterhöft. L. Dux, and D. Pette. Metabolite patterns related to exhaustion, recovery, and transformation of chronically stimulated rabbit fast-twitch muscle. Pflügers Arch. Europ. J. Physiol. 420: 359–366, 1992.CrossRefGoogle Scholar
  11. 11.
    Heilig, A. and D. Pette. Albumin in rabbit skeletal muscle. Origin, distribution and regulation by contractile activity. Eur. J. Biochem. 171: 503–508, 1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Henriksson, J., M. M.-Y. Chi, C. S. Hintz, D. A. Young, K. K. Kaiser, S. Salmons, and O. H. Lowry. Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am. J. Physiol. 251:C614–C632, 1986.PubMedGoogle Scholar
  13. 13.
    Hofmann, S. and D. Pette. Low-frequency stimulation of rat fast-twitch muscle enhances the expression of hexokinase II and both the translocation and expression of glucose transporter 4 (GLUT-4). Eur J. Biochem. 219:307–315, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Hudlická, O., L. Dodd, E. M. Renkin, and S. D. Gray. Early changes in fiber profile and capillary density in long-term stimulated muscles. Am. J. Physiol. 243: H528–H535, 1982.PubMedGoogle Scholar
  15. 15.
    Hudlická, O. and S. Price. The role of blood flow and. Pflügers Arch. Europ. J. Physiol. 417: 67–72, 1990.CrossRefGoogle Scholar
  16. 16.
    Kaufmann, M., J.-A. Simoneau, J. H. Veerkamp, and D. Pette. Electrostimulation-induced increases in fatty acid-binding protein and myoglobin in rat fast-twitch muscle and comparison with tissue levels in heart. FEBS Lett. 245: 181–184, 1989.PubMedCrossRefGoogle Scholar
  17. 17.
    Kong, X. M., J. Manchester, S. Salmons, and J. C. Lawrence. Glucose transporters in single skeletal muscle fibers — Relationship to hexokinase and regulation by contractile activity. J. Biol. Chem. 269: 12963–12967, 1994.PubMedGoogle Scholar
  18. 18.
    Kugelberg, E. and B. Lindegren. Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres. J.Physiol. (Lond.) 288: 285–300, 1979.Google Scholar
  19. 19.
    Leeuw, T. and D. Pette. Coordinate changes in the expression of troponin subunit and myosin heavy chain isoforms during fast-to-slow transition of low-frequency stimulated rabbit muscle. Eur. J. Biochem. 213: 1039–1046, 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    Maier, A. and D. Pette. The time course of glycogen depletion in single fibers of chronically stimulated rabbit fast-twitch muscle. Pflügers Arch. Europ. J. Physiol. 408: 338–342, 1987.CrossRefGoogle Scholar
  21. 21.
    Mayne, C. N., W. A. Anderson, R. L. Hammond, B. R. Eisenberg, L. W. Stephenson, and S. Salmons. Correlates of fatigue resistance in canine skeletal muscle stimulated electrically for up to one year. Am. J. Physiol. 261: C259–C270, 1991.PubMedGoogle Scholar
  22. 22.
    Nemeth, P. M., D. Pette, and G. Vrbová. Comparison of enzyme activities among single muscle fibres within defined motor units. J.Physiol.(Lond.) 311: 489–495, 1981.Google Scholar
  23. 23.
    Parra, J. and D. Pette. Effects of low-frequency stimulation on soluble and structure-bound activities of hexokinase and phosphofructokinase in rat fast-twitch muscle. Biochim. Biophys. Acta 1251: 154–160, 1995.PubMedCrossRefGoogle Scholar
  24. 24.
    Peckham, P. H., J. T. Mortimer, and J. P. van der Meulen. Physiologic and metabolic changes in white muscle of cat following induced exercise. Brain Res. 50: 424–429, 1973.PubMedCrossRefGoogle Scholar
  25. 25.
    Pette, D. and G. Vrbová. Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev. Physiol Biochem. Pharmacol. 120: 116–202, 1992.Google Scholar
  26. 26.
    Reichmann, H., H. Hoppeler, O. Mathieu-Costello, F. von Bergen, and D. Pette. Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Arch. Europ. J. Physiol. 404: 1–9, 1985.CrossRefGoogle Scholar
  27. 27.
    Reichmann, H., R. Wasl, J.-A. Simoneau, and D. Pette. Enzyme activities of fatty acid oxidation and the respiratory chain in chronically stimulated fast-twitch muscle of the rabbit. Pflügers Arch. Europ. J. Physiol. 418: 572–574, 1991.CrossRefGoogle Scholar
  28. 28.
    Rose, I. A. and J. V. B. Warms. Mitochondrial hexokinase. Release, rebinding, and location. J. Biol. Chem. 242: 1635–1645, 1967.PubMedGoogle Scholar
  29. 29.
    Simoneau, J.-A., M. Kaufmann, and D. Pette. Asynchronous increases in oxidative capacity and resistance to fatigue of electrostimulated muscles of rat and rabbit. J.Physiol.(Lond.) 460: 573–580, 1993.Google Scholar
  30. 30.
    Weber, F. E. and D. Pette. Changes in free and bound forms and total amount of hexokinase isozyme II of rat muscle in response to contractile activity. Eur. J. Biochem. 191: 85–90, 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Dirk Pette
    • 1
  1. 1.Faculty of BiologyUniversity of KonstanzKonstanzGermany

Personalised recommendations