Skip to main content

Factors Contributing to Enhanced Fatigue-Resistance in Low-Frequency Stimulated Muscle

  • Chapter
The Physiology and Pathophysiology of Exercise Tolerance
  • 251 Accesses

Abstract

The ability for sustained contractile activity of skeletal muscle is generally assumed to correlate with a high capacity of aerobic-oxidative energy metabolism. This notion was derived from the observation that muscle fibres differing in their mitochondrial enzyme activities display distinct fatigue properties (4,7,18,22). Motor units composed of fasttwitch glycolytic (FG) fibres are fast-fatiguable, whereas motor units composed of socalled fast-twitch oxidative (FOG) or slow-twitch oxidative (SO) fibres are less fatigable or resistant to fatigue, respectively. Additional evidence in support of this notion has emerged from studies on fast-twitch muscles exposed to chronic electrical stimulation (for review see (25)). A major effect of maximally forced contractile activity by chronic lowfrequency stimulation (CLFS) is that stimulated muscles display pronounced increases in enzyme activities of terminal substrate oxidation (Fig. 1) and become non-fatigable (24,25).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergström, J., L. Hermansen, E. Hultman, and B. Saltin. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 71: 140–150, 1967.

    Article  PubMed  Google Scholar 

  2. Bottinelli, R., M. Canepari, C. Reggiani, and G. J. M. Stienen. Myofibrillar ATPase activity during isometric contraction and isomyosin composition in rat single skinned muscle fibres. J. Phvsiol. (Lond.) 481: 663–675, 1994.

    CAS  Google Scholar 

  3. Brown, M. D., M. A. Cotter, O. Hudlická, and G. Vrbová. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflügers Arch. Europ. J. Physiol. 361: 241–250, 1976.

    Article  CAS  Google Scholar 

  4. Burke, R. E., D. N. Levine, F. E. Zajac, P. Tsairis, and W. K. Engel. Mammalian motor units: Physiological-histochemical correlation in three types in cat gastrocnemius. Science 174: 709–712, 1971.

    Article  PubMed  CAS  Google Scholar 

  5. Cadefau, J. A., J. Parra, R. Cusso, G. Heine, and D. Pette. Responses of fatigable and fatigue-resistant fibers of rabbit muscle to low-frequency stimulation. Pflügers Arch. Europ. J. Physiol. 424: 529–537, 1993.

    Article  CAS  Google Scholar 

  6. Clausen, T. Regulation of active Na+-K+ transport in skeletal muscle. Physiol. Rev. 66: 542–580, 1986.

    PubMed  CAS  Google Scholar 

  7. Edström, L. and E. Kugelberg. Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J. Neurol. Neurosurg. Psychiatry 31: 424–433, 1968.

    Article  PubMed  Google Scholar 

  8. Everts, M. E., T. Lomo, and T. Clausen. Changes in K+, Na+ and calcium contents during in vivo stimulation of rat skeletal muscle. Acta Physiol. Scand. 147: 357–368. 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Green, H. J., M. Ball-Burnett, E. R. Chin, L. Dux, and D. Pette. Time dependent increases in Na+,K+-AT-Pase concentration of low-frequency stimulated rabbit muscle. FEBS Lett. 310: 129–131, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Green, H. J., S. Düsterhöft. L. Dux, and D. Pette. Metabolite patterns related to exhaustion, recovery, and transformation of chronically stimulated rabbit fast-twitch muscle. Pflügers Arch. Europ. J. Physiol. 420: 359–366, 1992.

    Article  CAS  Google Scholar 

  11. Heilig, A. and D. Pette. Albumin in rabbit skeletal muscle. Origin, distribution and regulation by contractile activity. Eur. J. Biochem. 171: 503–508, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Henriksson, J., M. M.-Y. Chi, C. S. Hintz, D. A. Young, K. K. Kaiser, S. Salmons, and O. H. Lowry. Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am. J. Physiol. 251:C614–C632, 1986.

    PubMed  CAS  Google Scholar 

  13. Hofmann, S. and D. Pette. Low-frequency stimulation of rat fast-twitch muscle enhances the expression of hexokinase II and both the translocation and expression of glucose transporter 4 (GLUT-4). Eur J. Biochem. 219:307–315, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Hudlická, O., L. Dodd, E. M. Renkin, and S. D. Gray. Early changes in fiber profile and capillary density in long-term stimulated muscles. Am. J. Physiol. 243: H528–H535, 1982.

    PubMed  Google Scholar 

  15. Hudlická, O. and S. Price. The role of blood flow and. Pflügers Arch. Europ. J. Physiol. 417: 67–72, 1990.

    Article  Google Scholar 

  16. Kaufmann, M., J.-A. Simoneau, J. H. Veerkamp, and D. Pette. Electrostimulation-induced increases in fatty acid-binding protein and myoglobin in rat fast-twitch muscle and comparison with tissue levels in heart. FEBS Lett. 245: 181–184, 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Kong, X. M., J. Manchester, S. Salmons, and J. C. Lawrence. Glucose transporters in single skeletal muscle fibers — Relationship to hexokinase and regulation by contractile activity. J. Biol. Chem. 269: 12963–12967, 1994.

    PubMed  CAS  Google Scholar 

  18. Kugelberg, E. and B. Lindegren. Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres. J.Physiol. (Lond.) 288: 285–300, 1979.

    CAS  Google Scholar 

  19. Leeuw, T. and D. Pette. Coordinate changes in the expression of troponin subunit and myosin heavy chain isoforms during fast-to-slow transition of low-frequency stimulated rabbit muscle. Eur. J. Biochem. 213: 1039–1046, 1993.

    Article  PubMed  CAS  Google Scholar 

  20. Maier, A. and D. Pette. The time course of glycogen depletion in single fibers of chronically stimulated rabbit fast-twitch muscle. Pflügers Arch. Europ. J. Physiol. 408: 338–342, 1987.

    Article  CAS  Google Scholar 

  21. Mayne, C. N., W. A. Anderson, R. L. Hammond, B. R. Eisenberg, L. W. Stephenson, and S. Salmons. Correlates of fatigue resistance in canine skeletal muscle stimulated electrically for up to one year. Am. J. Physiol. 261: C259–C270, 1991.

    PubMed  CAS  Google Scholar 

  22. Nemeth, P. M., D. Pette, and G. Vrbová. Comparison of enzyme activities among single muscle fibres within defined motor units. J.Physiol.(Lond.) 311: 489–495, 1981.

    CAS  Google Scholar 

  23. Parra, J. and D. Pette. Effects of low-frequency stimulation on soluble and structure-bound activities of hexokinase and phosphofructokinase in rat fast-twitch muscle. Biochim. Biophys. Acta 1251: 154–160, 1995.

    Article  PubMed  Google Scholar 

  24. Peckham, P. H., J. T. Mortimer, and J. P. van der Meulen. Physiologic and metabolic changes in white muscle of cat following induced exercise. Brain Res. 50: 424–429, 1973.

    Article  PubMed  CAS  Google Scholar 

  25. Pette, D. and G. Vrbová. Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev. Physiol Biochem. Pharmacol. 120: 116–202, 1992.

    Google Scholar 

  26. Reichmann, H., H. Hoppeler, O. Mathieu-Costello, F. von Bergen, and D. Pette. Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Arch. Europ. J. Physiol. 404: 1–9, 1985.

    Article  CAS  Google Scholar 

  27. Reichmann, H., R. Wasl, J.-A. Simoneau, and D. Pette. Enzyme activities of fatty acid oxidation and the respiratory chain in chronically stimulated fast-twitch muscle of the rabbit. Pflügers Arch. Europ. J. Physiol. 418: 572–574, 1991.

    Article  CAS  Google Scholar 

  28. Rose, I. A. and J. V. B. Warms. Mitochondrial hexokinase. Release, rebinding, and location. J. Biol. Chem. 242: 1635–1645, 1967.

    PubMed  CAS  Google Scholar 

  29. Simoneau, J.-A., M. Kaufmann, and D. Pette. Asynchronous increases in oxidative capacity and resistance to fatigue of electrostimulated muscles of rat and rabbit. J.Physiol.(Lond.) 460: 573–580, 1993.

    CAS  Google Scholar 

  30. Weber, F. E. and D. Pette. Changes in free and bound forms and total amount of hexokinase isozyme II of rat muscle in response to contractile activity. Eur. J. Biochem. 191: 85–90, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pette, D. (1996). Factors Contributing to Enhanced Fatigue-Resistance in Low-Frequency Stimulated Muscle. In: Steinacker, J.M., Ward, S.A. (eds) The Physiology and Pathophysiology of Exercise Tolerance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5887-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5887-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7700-9

  • Online ISBN: 978-1-4615-5887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics