Advertisement

Training for the Enhancement of Exercise Tolerance in Patients with Left Ventricular Dysfunction

  • Andrew J. S. Coats
Chapter
  • 170 Downloads

Abstract

In normal subjects maximal exercise during standard incremental exercise tests is usually limited at a point where delivery of oxygen to the periphery is maximal. This point is called maximal oxygen uptake, defined as the rate of oxygen uptake where a further increment of workload leads to further anaerobic metabolism, but no further increase in oxygen utilisation. In normals this point is also the point at which cardiac output is maximal.

Keywords

Heart Failure Skeletal Muscle Exercise Training Chronic Heart Failure Physical Training 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Actamopoulos, S., A.J. Coats, F. Brunotte, L. Arnolda, T. Meyer, C.H. Thompson, J.F. Dunn, J. Stratton, G.J. Kemp, G.K. Radda, et al. Physical training improves skeletal muscle metabolism in patients with chronic heart failure. J. Am. Coll. Cardiol. 21:1101–1106, 1993.CrossRefGoogle Scholar
  2. 2.
    Anker, S.D., M. Volterrani, J. Swan, T.P. Chua, P.A. Poole-Wilson, and A.J.S. Coats. Hormonal changes in cardiac cachexia, Circulation 92:1-206-1-207, 1995.Google Scholar
  3. 3.
    Brunotte, F., C.H. Thompson, S. Actamopoulos, A. Coats, J. Unitt, D. Lindsay, L. Kaklamanis, G.K. Radda, and B. Rajagopalan. Rat skeletal muscle metabolism in experimental heart failure: Effects of physical training. Acta Physiol. Scand. 154:439–447, 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Buller, N.P., and P.A. Poole-Wilson. Mechanism of the increased ventilatory response to exercise in patients with chronic heart failure. Br. Heart J. 63:281–283, 1990.PubMedCrossRefGoogle Scholar
  5. 5.
    Chua, T.P, A. Amadi, A.L. Clark, D. Harrington, and A.J.S. Coats. Increased chemosensitivity to hypoxia at rest and during exercise in chronic heart failure. Br. Heart J. 73 (suppl 3):26, 1995.CrossRefGoogle Scholar
  6. 6.
    Clausen, J.P. Circulatory adjustments to dynamic exercise and effect of physical training in normal subjects and in patients with coronary artery disease. Progr. Cardiovasc. Dis. 18:459–495, 1976.CrossRefGoogle Scholar
  7. 7.
    Clark, A., and A. Coats. The mechanisms underlying the increased ventilatory response to exercise in chronic stable heart failure. Eur. Heart J. 13:1698–1708, 1992.PubMedGoogle Scholar
  8. 8.
    Clark, A.L., J.L. Sparrow, and A.J.S. Coats. Muscle fatigue and dyspnoea in chronic heart failure: two sides of the same coin? Eur. Heart J. 16:49–52, 1995.PubMedCrossRefGoogle Scholar
  9. 9.
    Coats, A.J.S. Exercise rehabilitation in chronic heart failure. J. Am. Coll. Cardiol. 22 (suppl A):172A–177A, 1993.PubMedCrossRefGoogle Scholar
  10. 10.
    Coats, A.J.S., S. Actamopoulos, T.E. Meyer, J. Conway, and P. Sleight. Effects of physical training in chronic heart failure. Lancet 335:63–66, 1990.PubMedCrossRefGoogle Scholar
  11. 11.
    Coats, A.J., S. Actamopoulos, A. Radaelli, A. McCance, T.E. Meyer, L. Bernardi, P.L. Solda, P. Davey, O. Ormerod, C. Forfar, et al. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131, 1992.PubMedCrossRefGoogle Scholar
  12. 12.
    Coats, A.J.S., A.L. Clark, M. Piepoli, M. Volterrani, and P.A. Poole-Wilson. Symptoms and quality of life in heart failure; the muscle hyporthesis. Br. Heart. J. 72 (Suppl):S36–S39, 1994.PubMedCrossRefGoogle Scholar
  13. 13.
    Cohn, J.N., D.G. Archibald, S. Ziesche, J.A. Franciosa, W.E. Harston, F.E. Tristani, W.B. Dunkman, W. Jacobs, G.S. Francis, K.H. Flohr, S. Goldman, F.R. Cobb, P.M. Shah, R. Saunders, R.D. Fletcher, H.S. Loeb, V.C. Hughes, and B. Baker. Effect of vasodilator therapy on mortality in chronic congestive heart failure. New Engl.J. Med. 314:1547–1552, 1986.PubMedCrossRefGoogle Scholar
  14. 14.
    Cohn, J.N., G. Johnson, S. Ziesche, F. Cobb, G. Francis, F. Tristani, R. Smith, W.B. Dunkman, H. Loeb, M. Wong, G. Bhat, S. Goldman, R.D. Fletcher, J. Doherty, C.V. Hughes, P. Carson, G. Cintron, R. Shabetai, and C. Haakenson. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. New Engl. J. Med. 325:303–310, 1991.PubMedCrossRefGoogle Scholar
  15. 15.
    Colucci, W.S., E.H. Sonnenblick, K.F. Actams, M. Berk, S.C. Brozena, A.J. Cowley, J.M. Grabicki, S.A. Kubo, T. LeJemtel, W.A. Littler, et al. Efficacy of phosphodiesterase inhibition with milrinone in combination with converting enzyme inhibitors in patients with heart failure. The Milrinone Multicenter Trials Investigators. J. Am Coll. Cardiol. 22:113A–118A, 1993.PubMedCrossRefGoogle Scholar
  16. 16.
    Conn, E.H., R.S. Williams, and A.G. Wallace. Exercise responses before and after physical conditioning in patients with severely depressed left ventricular function. Am. J. Cardiol. 49:296–300, 1982.PubMedCrossRefGoogle Scholar
  17. 17.
    Consensus Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study. New Engl. J. Med. 316:1429–1435, 1987.CrossRefGoogle Scholar
  18. 18.
    Davey, P., T. Meyer, A. Coats, S. Actamopoulos, B. Casadei, J. Conway, and P. Sleight. Ventilation in chronic heart failure: effects of physical training. Br. Heart J. 68:473–477, 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Drexler, H., U. Banhardt, T. Meinertz, H. Wollschläger, M. Lehmann, and H. Just. Contrasting peripheral short-term and long-term effects of converting enzyme inhibition in patients with congestive heart failure. A double-blind, placebo-controlled trial. Circulation 79:491–502, 1989.PubMedCrossRefGoogle Scholar
  20. 20.
    Drexler, H., D. Hayoz, T. Munzel, H. Just, R. Zelis, and H.R. Brunner. Endothelial function in congestive heart failure. Am. Heart J. 126:761–764, 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Drexler, H., U. Riede, T. Münzel, H. König, E. Funke, and H. Just, Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759, 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Franciosa, J.A., M. Park, and T.B. Levine. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am. J. Cardiol. 47:33–39, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Hambrecht, R., J. Niebauer, E. Fiehn, B. Kalberer, B. Offner, K. Hauer, U. Riede, G. Schlierf, W. Kubier, and G. Schüler. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J. Am Coll. Cardiol. 25:1239–1249, 1995.PubMedCrossRefGoogle Scholar
  24. 24.
    Jondeau, G., S.D. Katz, L. Zohman, M. Goldberger, M. McCarthy, J.P. Bourdarias, and T.H. LeJemtel. Active skeletal muscle mass and cardiopulmonary reserve. Failure to attain peak aerobic capacity during maximal bicycle exercise in patients with severe congestive heart failure. Circulation 86:1351–1356, 1992.PubMedCrossRefGoogle Scholar
  25. 25.
    Kiilavuori, K., L. Toivonen, H. Naveri, and H. Leinonen. Reversal of autonomic derangements by physical training in chronic heart failure assessed by heart rate variability. Eur. Heart J. 16:490–495, 1995.PubMedGoogle Scholar
  26. 26.
    Koch, M., H. Douard, and J.P. Broustet. The benefit of graded physical exercise in chronic heart failure. Chest 101:231S–235S, 1992.PubMedGoogle Scholar
  27. 27.
    Letac, B., A. Cribier, and J.F. Desplanches. A study of left ventricular function in coronary patients before and after physical training. Circulation 56:375–378, 1977.PubMedCrossRefGoogle Scholar
  28. 28.
    Lipkin, D.P., R. Canepa-Anson, M.R. Stephens, and P.A. Poole-Wilson. Factors determining symptoms in heart failure: comparison of fast and slow exercise tests. Br. Heart. J. 55:439–445, 1986.PubMedCrossRefGoogle Scholar
  29. 29.
    Mancini, D.M., N. Ferraro, D. Nazzaro, B. Chance, and J.R. Wilson. Respiratory muscle deoxygenation during exercise in patients with heart failure demonstrated with near-infrared spectroscopy. J. Am. Coll. Cardiol. 18:492–498, 1991.PubMedCrossRefGoogle Scholar
  30. 30.
    Mancini, D.M., D. Henson, J. La Manca, L. Donchez, and S. Levine. Benefit of selective respiratory muscle training on exercise capacity in patients with chronic congestive heart failure [see comments]. Circulation 91:320–329, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Mancini, D.M., D. Henson, J. LaManca, and S. Levine. Evidence of reduced respiratory muscle endurance in patients with heart failure. J. Am. Coll. CArdiol. 24:972–981, 1994.PubMedCrossRefGoogle Scholar
  32. 32.
    Mancini, D.M., G. Walter, N. Reichek, R. Lenkinksi, K.K. McCully, J.L. Mullen, and J.R. Wilson. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85:1364–1373, 1992.PubMedCrossRefGoogle Scholar
  33. 33.
    Massie, B.M., M. Conway, B. Rajagopalan, R. Yonge, S. Frostick, J. Ledingham, P. Sleight, and G. Radda. Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation 78:320–326, 1988.PubMedCrossRefGoogle Scholar
  34. 34.
    McAllister, R.M. Endothelial-mediated control of coronary and skeletal muscle blood flow during exercise: Introduction. Med. Sci. Sports Exerc. 27:1122–1124, 1995.PubMedGoogle Scholar
  35. 35.
    Minotti, J.R., E.C. Johnson, T.H. Hudson, G. Zuroske, G. Murata, E. Fukushima, T.G. Cagle, T.W. Chick, B.M. Massie, and M.V. Icenogle. Skeletal muscle response to exercise training in congestive heart failure. J. Clin Invest. 86:751–758, 1990.PubMedCrossRefGoogle Scholar
  36. 36.
    Packer, M., J.R. Carver, R.J. Rodeheffer, R.J. Ivanhoe, R. DiBianco, S.M. Zeldis, G.H. Hendrix, W.J. Bommer, U. Elkayam, M.L. Kukin, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group [see comments]. N. Engl J. Med. 325:1468–1475, 1991.PubMedCrossRefGoogle Scholar
  37. 37.
    Piepoli, M., A.L. Clark, M. Volterrani, S. Actamopoulos, P. Sleight, and A.J.S. Coats. Contribution of muscle afferents to the hemodynamic, autonomie and ventilatory responses to exercise in patients with chronic heart failure. Effects of physical training. Circulation (In press).Google Scholar
  38. 38.
    Poole-Wilson, P.A. Chronic heart failure: causes, pathophysiology, prognosis, clinical manifestations, ivestigations. In: Diseases of the Heart, edited by P.A. Poole-Wilson. London: Balliere Tindall, London, 1989, pp. 48–57.Google Scholar
  39. 39.
    SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. New Engl. J. Med. 325:293–302, 1991.CrossRefGoogle Scholar
  40. 40.
    Stratton, J.R., J.F. Dunn, S. Actamopoulos, G.J. Kemp, A.J. Coats, and B. Rajagopalan. Training partially reverses skeletal muscle metabolic abnormalities during exercise in heart failure. J. Appl. Physiol. 76:1575–1582, 1994.PubMedGoogle Scholar
  41. 41.
    Sullivan, M.J. H.J. Green, and F.R. Cobb. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81:518–527, 1990.PubMedCrossRefGoogle Scholar
  42. 42.
    Sullivan, M.J., M.B. Higginbotham, and F.R. Cobb. Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities. Circulation 77:552–559, 1988.PubMedCrossRefGoogle Scholar
  43. 43.
    Sullivan, M.J., M.B. Higginbotham, and F.R. Cobb. Exercise training in patients with severe left ventricular dysfunction: Hemodynamic and metabolic effects. Circulation 78:506–515, 1988.PubMedCrossRefGoogle Scholar
  44. 44.
    Sullivan, M.J., M.B. Higginbotham, and F.R. Cobb. Exercise training in patients with chronic heart failure delays ventilatory anaerobic threshold and improves submaximal exercise performance. Circulation 79:324–329, 1989.PubMedCrossRefGoogle Scholar
  45. 45.
    Swan, J.W., C. Walton, I.F. Godsland, A.L. Clark, A.J.S. Coats, and M.F. Oliver. Insulin resistance in chronic heart failure, Eur. Heart J. 15:1528–1532,. 1994.PubMedGoogle Scholar
  46. 46.
    Volterrani, M., A.L. Clark, PF. Ludman, J.W. Swan, S. Actamopoulos, M. Piepoli, and A.J.S. Coats. Determinants of exercise capacity in chronic heart failure. Eur. Heart J. 15:801–809, 1994.PubMedGoogle Scholar
  47. 47.
    Waagstein, F. Beta blockers in heart failure. Cardiology 82 (suppl 3): 13–18, 1993.PubMedCrossRefGoogle Scholar
  48. 48.
    Williams, R.S. Exercise training of patients with ventricular dysfunction and heart failure. Cardiovasc. Clin. 15:218–231, 1985.Google Scholar
  49. 49.
    Wilson, J.R., D.M. Mancini, and W.B. Dunkman. Exertional fatigue due to skeletal muscle dysfunction in patients with heart failure. Circulation 87:470–475, 1993.Google Scholar
  50. 50.
    Wilson, J.R., J.L. Martin, and N. Ferraro. Impaired skeletal muscle nutritive flow during exercise in patients with congestive heart failure: role of cardiac pump dysfunction as determined by the effect of dobutamine. Am. J. Cardiol. 53:1308–1315, 1984.PubMedCrossRefGoogle Scholar
  51. 51.
    Zelis, R., S.H. Nellis, J. Longhurst, G. Lee, and D.T. Mason. Abnormalities in the regional circulations accompanying congestive heart failure. Progr. Cardiovasc. Dis. 18:181–199, 1975.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Andrew J. S. Coats
    • 1
  1. 1.National Heart and Lung InstituteImperial CollegeLondonUK

Personalised recommendations