Physiological Limitations to Endurance Exercise

  • R. L. Hughson
  • H. J. Green
  • S. M. Phillips
  • J. K. Shoemaker


Endurance performance is dependent on the coordinated responses of the cardiovascular and respiratory systems, muscle metabolism, mechanical efficiency, and thermoregulation. A number of reviews have focused on one, or several, aspects of these responses (1,7,18). Yet, one central tenet of optimizing endurance performance revolves around the efficient aerobic transformation of metabolic substrate into mechanical power output, with delayed depletion of the glycogen reserves (1,10). Thus, it is important to have an efficient oxygen transport system and a metabolic system that supplies appropriate substrates to the mitochondria for oxidative metabolism with minimal concurrent glycolysis, a concept called “tight coupling” of oxidative metabolism (14).


Blood Lactate Endurance Training Work Rate Endurance Exercise Submaximal Exercise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astrand, P. and K. Rodahl. Textbook of Work Physiology. New York: McGraw-Hill Book Co. 1985.Google Scholar
  2. 2.
    Barstow, T. J., S. Buchthal, S. Zanconato, and D. M. Cooper. Muscle energetics and pulmonary oxygen uptake kinetics during moderate exercise. J. Appl. Physiol. 77: 1742–1749, 1994.PubMedGoogle Scholar
  3. 3.
    Cadefau, J., H. J. Green, R. Cussó, M. Ball-Burnett, and G. Jamieson. Coupling of muscle phosphorylation potential to glycolysis during work after short-term training. J. Appl. Physiol. 76: 2586–2593, 1994.PubMedGoogle Scholar
  4. 4.
    Casaburi, R., T. W. Storer, I. Ben-Dov, and K. Wasserman. Effect of endurance training on possible determinants of VO2 during heavy exercise. J. Appl. Physiol. 62: 199–207, 1987.PubMedGoogle Scholar
  5. 5.
    Connett, R. J. Analysis of metabolic control: new insights using scaled creatine kinase model. Am. J. Physiol. 254: R949–R959, 1988.PubMedGoogle Scholar
  6. 6.
    Corcondilas, A., G. T. Koroxenidis, and J. T. Shepherd. Effect of a brief contraction of forearm muscles on forearm blood flow. J. Appl. Physiol. 19: 142–146, 1964.PubMedGoogle Scholar
  7. 7.
    Coyle, E. F. Integration of the physiological factors determining endurance performance ability. In: Exercise and Sport Sciences Reviews, edited by J. O. Holloszy. Baltimore: Williams and Wilkins, 1995, p. 25–63.Google Scholar
  8. 8.
    Dempsey, J. A., P. E. Hanson, and K. S. Henderson. Exercise induced arterial hypoxemia in healthy persons at sea level. J. Physiol. (Lond) 355: 161–175, 1984.Google Scholar
  9. 9.
    di Prampero, P. E. and R. Margaria. Relationship between O2 consumption, high energy phosphates and the kinetics of the O2 debt in exercise. Pflugers Arch. 304: 11–19, 1968.PubMedCrossRefGoogle Scholar
  10. 10.
    Green, H. J. How important is endogenous muscle glycogen to fatigue in prolonged exercise. Can. J. Physiol. Pharmacol. 69: 2971991.Google Scholar
  11. 11.
    Green, H. J., J. Cadefau, R. Cussö, M. Ball-Burnett, and G. Jamieson. Metabolic adaptations to short term training are expressed early in submaximal exercise. Can. J. Physiol. Pharmacol. 73: 474–482, 1995.PubMedCrossRefGoogle Scholar
  12. 12.
    Green, H. J., S. Jones, M. E. Ball-Burnett, D. Smith, J. Livesey, and B. W. Farrance. Early muscular and metabolic adaptations to prolonged exercise training in humans. J. Appl. Physiol. 70: 2032–2038, 1991.PubMedGoogle Scholar
  13. 13.
    Hickson, R. C., H. A. Bomze, and J. O. Holloszy. Faster adjustment of O2 uptake to the energy requirement of exercise in the trained state. J. Appl. Physiol. 44: 877–881, 1978.PubMedGoogle Scholar
  14. 14.
    Hochachka, P. W. and G. O. Matheson. Regulating ATP turnover rates over broad dynamic work ranges in skeletal muscles.J. Appl. Physiol. 73: 1697–1703, 1992.PubMedGoogle Scholar
  15. 15.
    Hughson, R. L. Alterations in the oxygen deficit-oxygen debt relationships with beta-adrenergic receptor blockade in man. J. Physiol. (London) 349: 375–387, 1984.Google Scholar
  16. 16.
    Hughson, R. L. and M. A. Morrissey. Delayed kinetics of VO2 in the transition from prior exercise. Evidence for O2 transport limitation of VO2 kinetics. A review. Int. J. Sports Med. 11: 94–105, 1983.Google Scholar
  17. 17.
    Hughson, R. L., H. C. Xing, J. E. Cochrane, and G. C. Butler. Faster increase in oxygen uptake during supine exercise with lower body negative pressure. J. Appl. Physiol. 75: 1962–1967, 1993.PubMedGoogle Scholar
  18. 18.
    Joyner, M. J. Physiological limiting factors and distance running: Influence of gender and age on record performances. In: Exercise and Sport Sciences Reviews, edited by J. O. Holloszy. Baltimore: Williams and Wilkins, 1993, p. 103–133.Google Scholar
  19. 19.
    Leyk, D., D. Eβfeld, K. Baum, and J. Stegemann. Early leg blood flow adjustment during dynamic foot plantarflexions in upright and supine body position. Int. J. Sports Med. 15: 447–452, 1994.PubMedCrossRefGoogle Scholar
  20. 20.
    Linnarsson, D. Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol. Scand. Suppl. 415: 1–68, 1974.Google Scholar
  21. 21.
    Linnarsson, D., J. Karlsson, L. Fagraeus, and B. Saltin. Muscle metabolites and oxygen deficit with exercise in hypoxia and hyperoxia. J. Appl. Physiol. 36: 399–402, 1974.PubMedGoogle Scholar
  22. 22.
    Murphy, P. C., L. A. Cuervo, and R. L. Hughson. Comparison of ramp and step exercise protocols during hypoxic exercise in man. Cardiovasc. Res. 23: 825–832, 1989.PubMedCrossRefGoogle Scholar
  23. 23.
    Oldenburg, F. A., D. W. McCormack, J. L. C. Morse, and N. L. Jones. A comparison of exercise responses in stairclimbing and cycling. J. Appl. Physiol. 46: 510–516, 1979.PubMedGoogle Scholar
  24. 24.
    Phillips, S. M., H. J. Green, M. J. MacDonald, and R. L. Hughson. Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. J. Appl. Physiol. 79: 1914–1920, 1995.PubMedGoogle Scholar
  25. 25.
    Sheriff, D. D., L. B. Rowell, and A. M. Scher. Is rapid rise in vascular conductance at onset of dynamic exercise due to muscle pump. Am. J. Physiol. Heart Circ. Physiol. 265: H1227–H1234, 1993.Google Scholar
  26. 26.
    Shoemaker, J. K., S. M. Phillips, H. J. Green, and R. L. Hughson. Faster femoral artery blood velocity kinetics at the onset of exercise following training. Cardiovasc. Res. in press, 1996.Google Scholar
  27. 27.
    Sun, D., A. Huang, A. Koller, and G. Kaley. Short-term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles of rats. J. Appl. Physiol. 76: 2241–2247, 1994.PubMedGoogle Scholar
  28. 28.
    Toska, K. and M. Eriksen. Peripheral vasoconstriction shortly after onset of moderate exercise in humans. J. Appl. Physiol. 77: 1519–1525, 1994.PubMedGoogle Scholar
  29. 29.
    Whipp, B. J. and M. Mahler. Dynamics of pulmonary gas exchange during exercise. In: Pulmonary Gas Exchange, edited by J. B. West. New York: Academic, 1980, p. 33–96.Google Scholar
  30. 30.
    Yoshida, T. and H. Watari. 31P-Nuclear magnetic resonance spectroscopy study of the time course of energy metabolism during exercise and recovery. Eur. J. Appl. Physiol. 66: 494–499, 1993.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. L. Hughson
    • 1
  • H. J. Green
    • 1
  • S. M. Phillips
    • 1
  • J. K. Shoemaker
    • 1
  1. 1.Department of KinesiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations