Advertisement

Endocrine Regulation of Metabolism During Exercise

  • H. Weicker
  • G. Strobel
Chapter
  • 173 Downloads

Abstract

The efficiency of hormonal stimulation on metabolic regulation not only depends on the plasma concentration of the hormones, their receptors, post-receptor, and second messenger systems, but also on the enzymatic and metabolic adaptation triggered by physical activity. Insulin and catecholamines, as well as the mechanisms, which elicit the metabolic response, will be discussed. The previous assumption of the insulin mediated glucose transport through the cell membrane after insulin receptor interaction and post-receptor activation is challenged by the function of the glucose transporter Glut 4 on the plasma and intracellular membranes. New findings on this subject, such as additive effects of insulin and exercise, will be reported. The exercise induced catecholamine overflow, which can exceed resting values by up to 50 fold, is attenuated by adrenoreceptor down-regulation, post-receptor adaptation, activation of second messenger systems, metabolic and renal clearance rates, as well as by the sulfconjugation of catecholamines. The metabolic regulation of carbohydrate-and lipid metabolism by insulin and catecholamines will be addressed.

Keywords

Glucose Uptake Insulin Receptor Glucose Transporter Glucose Transporter Glut Membrane Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonen, A., J. C. McDermott, and M. H. Tan. Glucose transport in skeletal muscle. Intern. Series On Sport Sciences: Biochemistry of Exercise VII, 21: 295–317, 1990.Google Scholar
  2. 2.
    Cryer, P. E. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. New Engl. J. Med. 303: 436–443, 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Czech, M. P. The nature and regulation of the insulin receptor: structure and function. Ann. Rev. Physiol. 47:357–381, 1985.CrossRefGoogle Scholar
  4. 4.
    Etgen Jr., G. J., A. R. Memon, G. A. Thompson Jr., and J. L. Ivy. Insulin-and contraction-stimulated translocation of GTP binding proteins and Glut 4 protein in skeletal muscle. J. Biol. Chem. 268: 20164–20169, 1993.PubMedGoogle Scholar
  5. 5.
    Farrell, P. A. Exercise effects on regulation of energy metabolism by pancreatic and gut hormones. Perspectives in Exerc. Science and Sports Med.: Energy Supply in Exercise and Sport 5: 383–434, 1992.Google Scholar
  6. 6.
    Flores-Riveros, J. R., K. H. Kästner, K. S. Thompson, and M. D. Lane. Cyclic AMP-induced transcriptional repression of the insulin-responsive glucose transporter (Glut 4) gene: identification of a promoter region required for down-regulation of transcription. Biochem. Biophys. Res. Commun. 194: 1148–1154, 1993.PubMedCrossRefGoogle Scholar
  7. 7.
    Goodyear, L. J., M. F. Hirshman, P. M. Valyou, and E. S. Horton. Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabet. 41: 1091–1099, 1992.CrossRefGoogle Scholar
  8. 8.
    Hausdorff, W. P., M. G. Caron, and R. J. Lefkowitz. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J. 4: 2881–2889. 1990.PubMedGoogle Scholar
  9. 9.
    Herrmann-Frank, A., and G. Meissner. Regulation of Ca 2+ release from skeletal muscle sarcoplasmatic reticulum. Muscle Fatigue Mechan. in Exerc. and Train. 34: 11–19, 1992.Google Scholar
  10. 10.
    Jakobs, D. B., and Y. C. Jung. Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J.. Biol. Chem. 260: 2593–2596. 1985.Google Scholar
  11. 11.
    Kono, T., F. W. Robinson, T. L. Blevins, and O. Ezaki. Evidence that translocation of the glucose transporter acitivity is the major mechanism of insulin action on glucose transport in fat cells. J. Biol. Chem. 18: 10942–10947, 1982.Google Scholar
  12. 12.
    Neufer, P. D., M. H. Shinebarger, and G. L. Dohm. Effect of training and detraining on skeletal glucose transporter (Glut 4) content in rats. Can. J. Physiol. and Pharmacol. 70: 1286–1290, 1992.CrossRefGoogle Scholar
  13. 13.
    Piper, R. C., D. E. James, J.W. Slot, C. Puri, and J. C. Lawrence Jr. Glut 4 phosphorylation and inhibition of glucose transport by dibutyryl cAMP. J. Biol. Chem. 268: 16557–16563, 1993.PubMedGoogle Scholar
  14. 14.
    Ploug, T., H. Galbo, and E. A. Richter. Increased muscle glucose uptake during concentrations: no need for insulin. Am. J. Physiol. 247: E726–E731, 1984.PubMedGoogle Scholar
  15. 15.
    Ploug, T., H. Galbo, J. Vinten, M. Jorgensen. and E. A. Richter. Kinetics of glucose transport in rat muscle: effects of insulin and concentrations. Am. J. Physiol. 253: E12–E20, 1987.PubMedGoogle Scholar
  16. 16.
    Richter, E. A., T. Ploug, and H. Galbo. Increased muscle glucose uptake after exercise. Diabet. 34: 1041–1048, 1985.CrossRefGoogle Scholar
  17. 17.
    Rodnick, K. J., E. J. Henriksen, D. E. James, and J. O. Holloszy. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. Am. J. Physiol. 262: C9–C14, 1992.PubMedGoogle Scholar
  18. 18.
    Rosen, O. M. After Insulin Binds. Science 237: 1452–1458, 1987.PubMedCrossRefGoogle Scholar
  19. 19.
    Slentz, C. A., E. A. Gulve, K. J. Rodnick, E. J. Henriksen, J. H. Youn, and J. O. Holloszy. Glucose transporters and maximal transport are increased in endurance trained rat soleus. Am. J. Physiol. 73: 486–492, 1992.Google Scholar
  20. 20.
    Smith, R. L., and J. C. Lawrence Jr. Insulin action in denervated skeletal muscle. J.. Biol. Chem. 260: 273–278, 1985.PubMedGoogle Scholar
  21. 21.
    Strobel, G., B. Friedmann, J. Jost, and P. Bärtsch. Plasma and platelet catecholamine and catecholamine sulfate response to various exercise tests. Am. J. Physiol. 267: E537–E543, 1994.PubMedGoogle Scholar
  22. 22.
    Weicker, H., G. Strobel. Sportmedizin:Biochemisch-physiologische Grundlagen und ihre sportartspezifische Bedeutung. Stuttgart, Germany: Gustav Fischer Verlag, Stuttgart, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • H. Weicker
    • 1
  • G. Strobel
    • 1
  1. 1.Department of Sports MedicineUniversity of HeidelbergGermany

Personalised recommendations