Skip to main content

The Role of Substance P Receptors in Amygdaloid Modulation of Aggressive Behavior in the Cat

  • Chapter
Aggression

Part of the book series: The Plenum Series in Social/Clinical Psychology ((SSSC))

  • 226 Accesses

Abstract

It is well established from studies conducted both in animals [1, 4–6, 11, 25, 53, 61] and humans [13, 17, 19, 21, 30, 34, 43, 57, 59] that the temporal lobe plays an important role in the regulation of aggression and violence. Particular attention has been given to the varied functions of amygdala in regulating aggressive processes. While experimental evidence indicates that, in general, activation of amygdaloid nuclei does not result in the direct elicitation of aggressive responses in animals [50], it is very clear from the literature that amygdaloid nuclei can powerfully modulate aggressive behavior induced by electrical stimulation of the hypothalamus or midbrain periaqueductal gray (PAG) [42, 52].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamec, R. E. (1990). Role of the amygdala and medial hypothalamus in spontaneous feline aggression and defense. Aggress. Behay. 16, 207–222.

    Article  Google Scholar 

  2. Bandler, R. (1984). Identification of hypothalamic and midbrain periaqueductal grey neurons mediating aggressive and defensive behavior by intracerebral microinjections of excitatory amino acids. In R. Bandler (Ed.), Modulation of sensorimotor activity during alterations in behavioral states, Modulation of Sensorimotor Activity (pp. 369–391). New York: Alan R. Liss, Inc.

    Google Scholar 

  3. Bard, P. & McK. Rioch, D. (1937). A study of four cats deprived of neocortex and additional portions of the forebrain. Bull. Johns Hopkins Hospital, LX no. 2, 73–124.

    Google Scholar 

  4. Bard, P. & Mountcastle, V. B. (1948). Some forebrain mechanisms involved in expression of rage with special reference to suppression of angry behavior. Ass. Res. Nerv. Ment. Dis. 27, 362–399.

    Google Scholar 

  5. Block, C. H., Siegel, A., & Edinger, H. (1980). Effects of amygdaloid stimulation upon trigeminal sensory fields of the lip that established during hypothalamically-elicited quiet biting attack in the cat. Brain Res. 197, 39–55.

    Article  PubMed  Google Scholar 

  6. Brutus, M., Shaikh, M. B., Siegel, A., & Edinger, H. (1986). Effects of experimental temporal lobe seizures upon hypothalamically elicited aggressive behavior in the cat. Brain Res., 366, 53–63.

    Article  PubMed  Google Scholar 

  7. Cechetto, D. F., Ciriello, J., & Calaresu, F. R. (1983). Afferent connections to cardiovascular sites in the amygdala. A horseradish peroxidase study in the cat. J. Autonom. Nerv. Syst., 8, 97–110.

    Article  Google Scholar 

  8. Dam, T. V., Martinelli, B., & Quirion, R. (1990). Autoradiographic distribution of brain neurokinin-1/substance P receptors using a highly selective ligand [3H][Sar9,Met(O2)11]-substance P. Brain Res., 531, 330–337.

    Article  Google Scholar 

  9. Deutch, A. Y., Goldstein, M., Baldino, F. J., & Roth, R. H. (1988). Telencephalic projections of the A8 dopamine cell group. In P. W. Kalivas & C. B. Nemeroff (Eds.), The Mesocorticolimbic Dopamine System,(pp. 27–50). New York: New York Academy of Science.

    Google Scholar 

  10. Drapeau, G., D’Orleans-Juste, P., Dion, S., Rhaleb, N. E., Rouissi, N. E., & Regoli, D. (1987). Selective agonists for substance P and neurokinin receptors. Neuropeptides, 10, 43–54.

    Article  PubMed  Google Scholar 

  11. Egger, M. D. & Flynn, J. P. (1963). Effects of electrical stimulation of the amygdala on hypothalamically elicited attack behavior in cats. J. Neurophysiol., 26, 705–720.

    PubMed  Google Scholar 

  12. Emson, P. C., Jessell, T., Paxinos, G., & Cuello, A. C. (1978). Substance P in the amygdaloid complex, bed nucleus and stria terminalis of the rat brain, Brain Res. 149(1),97–105.

    Article  PubMed  Google Scholar 

  13. Falconer, M. A. (1973). Reversibility by temporal-lobe resection of the behavioral abnormalities of temporal-lobe epilepsy. New Eng. J. Med., 289(9), 451–455.

    Article  PubMed  Google Scholar 

  14. Fallon, J. H. (1981). Histochemical characterization of dopaminergic, noradrenergic and serotonergic projections to the amygdala. In Y. Ben-Ari (Ed.), The Amygdaloid Complex (pp. 175–183). North Holland: Elsevier.

    Google Scholar 

  15. Fuchs, S. A. G., Edinger, H. M., & Siegel, A. (1985). The organization of the hypothalamic pathways mediating affective defense behavior in the cat. Brain Res., 330,77–92.

    Article  PubMed  Google Scholar 

  16. Fuchs, S. A. G., Edinger, H. M., & Siegel, A. (1985). The role of the anterior hypothalamus in affective defense behavior elicited from the ventromedial hypothalamus of the cat. Brain Res., 330, 93–108.

    Article  PubMed  Google Scholar 

  17. Gedye, A. (1989). Episodic rage and aggression attributed to frontal lobe seizures. J. Ment. Deficien. Res., 33(5), 369–379.

    Google Scholar 

  18. Han, Y. C., Shaikh, M. B., & Siegel, A. (1994). Role of substance P in medial amygdaloid suppression of predatory attack behavior in the cat. Soc. Neurosci., (Abs.), 20.

    Google Scholar 

  19. Hermann, B. P., Schwartz, M. S., Whitman, S., & Karnes, W.E. (1980). Aggression and epilepsy: Seizure-type comparisons and high-risk variables. Epilepsia, 22, 691–698.

    Article  Google Scholar 

  20. Hess, W. R. & Brugger, M. (1943). Das subkorticale zentrum der affektinen abwehrreaktion. Hely. Physiol. Pharmac. Acta, 1, 33–52.

    Google Scholar 

  21. Hood, T. W., Siegfried, J., & Wieser, H. G. (1983). The role of stereotactic amygdalo-tomy in the treatment of tetriporal lobe epilepsy associated with behavioral disorders. Appl. Neurophysiol., 46, 19–25.

    PubMed  Google Scholar 

  22. Jasper, H. H. & Ajmone-Marsan, C. A. (1954). Stereotaxic Atlas of the Diencephalon of the Cat. Ottawa: National Research Council of Canada.

    Google Scholar 

  23. Kelley, A. E., Domesick, V. B., & Nauta, W. J. H. (1982). The amygdalostriatal projection in the rat: An anatomical study by anterograde and retrograde tracing methods. Neuroscience, 7(3),615–630.

    Article  PubMed  Google Scholar 

  24. Kevetter, G. A. & Winans, S. S. (1981). Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the “olfactory amygdala”. J. Comp. Neurol., 197,99–111.

    Article  PubMed  Google Scholar 

  25. Kluver, H. & Bucy, P. C. (1939). Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol and Psychiat, 42(6), 979–1000.

    Google Scholar 

  26. LeDoux, J. E., Ruggiero, D. A., & Reis, D. J. (1985). Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J. Comp. Neurol., 242, 182–213.

    Article  PubMed  Google Scholar 

  27. Lew, R., Geraghty, D. P., Regoli, D., & Burcher, E. (1990). Binding characteristics of [125I]Bolton-Hunter [Sar9,Met(O2)11]-substance P, a new selective radioligand for the NKl receptor. Eur. J. Pharmacology, 184,97–108.

    Google Scholar 

  28. Leyhausen, P. (1979). Cat Behavior: The Predatory and Social Behavior of Domestic And Wild Cats. New York: Garland STPM Press.

    Google Scholar 

  29. Lu, C.-L., Shaikh, M. B., & Siegel, A. (1992). Role of NMDA receptors in hypothalamic facilitation of feline defensive rage elicited from the midbrain periaqueductal gray. Brain Res., 581, 123–132.

    Article  PubMed  Google Scholar 

  30. Martinius, J. (1983). Homicide of an aggressive adolescent boy with right temporal lesion. A case report, Neurosci. Biobehay. Rev., 7, 419–477.

    Article  Google Scholar 

  31. McLean, S., Ganong, A. H., Seeger, T. F., Bryce, D. K., Pratt, K. G., Reynolds, L. S., Siok, C. J., Lowe, III & Heym, J. (1991). Activity and distribution of binding sites in brain of a non-peptide substance P (NK1) receptor antagonist. Science, 251, 437–439.

    Article  PubMed  Google Scholar 

  32. McLean, S., Skirboll, R., & Pert, C. B. (1985). Comparison of substance P and enkephalin distribution in rat brain: an overview using radioimmunocyto-chemistry, Neuroscience, 14, 837–852.

    Article  PubMed  Google Scholar 

  33. Mehler, W. R., Pretorius, J. K., Phelan, K. D., & Mantyh, P. W. (1981). Diencephalic afferent connections of the amygdala in the squirrel monkey with observations and comments on the cat and rat. In Y. Ben-Ari (Ed.), The Amygdaloid Complex,(pp. 105–120). North Holland: Elsevier.

    Google Scholar 

  34. Monroe, R. R. (1978). Brain Dysfunction in Aggressive Criminals (1 pp.). Lexington, Mass.: Lexington Books.

    Google Scholar 

  35. Mussap, C. J., Geraghty, D. P., & Burcher, E. (1993). Tachykinin receptors: A radioligand binding perspective. J. Neurochem., 60,1987–2009.

    Article  PubMed  Google Scholar 

  36. Neal, C. R., Swann, J. M., & Newman, S. W. (1989). The colocalization of substance P and prodynorphin immunoreactivity in neurons of the medial preoptic area, bed nucleus of the stria terminalis and medial nucleus of the amygdala of the Syrian hamster. Brain Res., 496, 1–13.

    Article  PubMed  Google Scholar 

  37. Ottersen, O. P. (1980). Afferent connections to the amygdaloid complex of the rat and cat: II. Afferents from the hypothalamus and basal telencephalon. J. Comp. Neurol., 194, 267–289.

    Article  PubMed  Google Scholar 

  38. Ottersen, O. P. (1982). Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase, J. Comp. Neurol., 205,30–48.

    Article  PubMed  Google Scholar 

  39. Ottersen, O. P. & Ben-Ari, Y. (1979). Afferent connections to the amygdaloid complex of the rat and cat. I. Projections from the thalamus. J. Comp. Neurol., 187 (2), 401–424.

    Article  PubMed  Google Scholar 

  40. Ranson, S. W., Kabat, H., & Magoun, H. W. (1935). Autonomic responses to electrical stimulation of hypothalamus, preoptic region and septum. Arch. Neurol. Psychiat., 33,467–477.

    Google Scholar 

  41. Regoli, D., Drapeau, G., Dion, S., & Couture, R. (1988). New selective agonists for neurokinin receptors: pharmacological tools for receptor characterization. Trends Pharmacol. Sci., 9, 290–295.

    Article  PubMed  Google Scholar 

  42. Schubert, K. & Siegel, A. (1994). What animal studies have taught us about the neurobiology of violence. Internat. J. Group Tensions, 24,237–265.

    Google Scholar 

  43. Serafetinides, E. A. (1965). Aggressiveness in temporal lobe epileptics and its relation to cerebral dysfunction and environmental factors. Epilepsia, 6, 33–42.

    Article  PubMed  Google Scholar 

  44. Shaikh, M. B., Barrett, J. A., & Siegel, A. (1987). The pathways mediating affective defense and quiet biting attack behavior from the midbrain central gray of the cat: An autoradiographic study. Brain Res., 437, 9–25.

    Article  PubMed  Google Scholar 

  45. Shaikh, M. B., Brutus, M., Siegel, A., & Siegel, H. E. (1985). Topographically organized midbrain modulation of predatory and defensive aggression in the cat. Brain Re., 336,308–312.

    Article  Google Scholar 

  46. Shaikh, M. B., Dalsass, M., & Siegel, A. (1990). Opioidergic mechanism mediating aggressive behavior in the cat. Aggress. Behay., 16, 191–206.

    Article  Google Scholar 

  47. Shaikh, M. B., Lu, C. L., & Siegel, A. (1991). An enkephalinergic mechanism involved in amygdaloid suppression of affective defense behavior elicited from the midbrain periaqueductal gray in the cat. Brain Res., 559, 109–117.

    Article  PubMed  Google Scholar 

  48. Shaikh, M. B., Schubert, K., & Siegel, A. (1994). Basal amygdaloid facilitation of mid-brain periaqueductal gray elicited defensive rage behavior in the cat is mediated through NMDA receptors. Brain Res., 635, 187–195.

    Article  PubMed  Google Scholar 

  49. Shaikh, M. B., Steinberg, A., & Siegel, A. (1993). Evidence that substance P is utilized in medial amygdaloid facilitation of defensive rage behavior in the cat. Brain Res., 625, 283–294.

    Article  PubMed  Google Scholar 

  50. Siegel, A. & Brutus, M. (1990). Neural substrates of aggression and rage in the cat. In A. N. Epstein & A. R. Morrison (Eds.), Progress in Psychobiology and Physiological Psychology (14th Ed.) (pp. 135–233). San Diego, CA: Academic Press.

    Google Scholar 

  51. Siegel, A. & Pott, C. B. (1988). Neural substrates of aggression and flight in the cat. Prog. Neurobiol., 31, 261–283.

    Article  PubMed  Google Scholar 

  52. Siegel, A. & Schubert, K. (1995). Neurotransmitters regulating feline aggressive behavior. Revs. in the Neurosc., 6, 47–61.

    Google Scholar 

  53. Stoddard-Apter, S. L. & MacDonnell, M. F. (1980). Septal and amygdalar efferents to the hypothalamus which facilitate hypothalamically elicited intraspecific aggression and associated hissing in the cat. An Autoradiographie study. Brain Res., 193, 19–32.

    Article  PubMed  Google Scholar 

  54. Swann, J. M. & Macchione, N. (1992). Photoperiodic regulation of substance P immunoreactivity in the mating behavior pathway of the male golden hamster, Brain Res., 590, 29–38.

    Article  PubMed  Google Scholar 

  55. Swarm, J. M. & Newman, S. W. (1992). Testosterone regulates substance P within neurons of the medial nucleus of the amygdala, the bed nucleus of the stria terminalis and the medial preoptic area of the male golden hamster. Brain Res., 590, 18–28.

    Article  Google Scholar 

  56. Sweidan, S., Edinger, H., & Siegel, A. (1991). D2 dopamine receptor-mediated mechanisms in the medial preoptic-anterior hypothalamus regulate affective defense behavior in the cat. Brain Res., 549,127–137.

    Article  PubMed  Google Scholar 

  57. Tonkonogy, J. M. (1991). Violence and temporal lobe lesion: head CT and MRI data. J Neuropsychiat. Clin. Neurosci., 3, 189–196.

    Google Scholar 

  58. Turner, B. H. (1981). The cortical sequence and terminal distribution of sensory related afferents to the amygdaloid complex of the rat and monkey. In Y. Ben-Ari (Ed.), The Amygdaloid Complex (pp. 51–62). North Holland: Elsevier.

    Google Scholar 

  59. Vaernet, K. (1983). Temporal lobotomy in children and young adults. Advances in Epileptology: XVth Epilep. Internat. Symp., 255–261.

    Google Scholar 

  60. Watson, R. E., Troiano, R., Poulakos, J. J., Weiner, S., Block, C. H., & Siegel, A. A. (1983). [14C]2-Deoxyglucose analysis of the functional neural pathways of the limbic forebrain in the rat. I. The amygdala Brain Res. Rev., 5, 1–44.

    Article  Google Scholar 

  61. Zagrodzka, J. & Fonberg, E. (1977). Amygdalar area involved in predatory behavior in cats. Acta Neurobiol. Exp., 37, 131–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shaikh, M.B., Siegel, A. (1997). The Role of Substance P Receptors in Amygdaloid Modulation of Aggressive Behavior in the Cat. In: Feshbach, S., Zagrodzka, J. (eds) Aggression. The Plenum Series in Social/Clinical Psychology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5883-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5883-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7698-9

  • Online ISBN: 978-1-4615-5883-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics