Skip to main content

Antiproliferative Phospholipid Analogues Act via Inhibition of Phosphatidylcholine Biosynthesis

  • Chapter
Frontiers in Bioactive Lipids

Abstract

In current anticancer therapies most cytostatic agents impair cell division by crosslinking DNA (e.g. cis-platin or alkylating agents), disrupting the cytoskeleton (e.g. vinblastine) or rectifying the cytoskeleton (e.g. taxol). In a new approach to cancer chemotherapy, the cell membrane was described as a target for cytostatic agents 1,2 and it has been proposed that inhibition of cell signaling pathways represents their mode of action3,4. Alkyllysophospholipids, as promising candidates for this kind of cytostatics, possess antineoplastic properties in vitro and in vivo5, leading to the development of another class of antiproliferative phospholipid analogues, the alkylphosphocholines. The prototype of these phospholipid analogues, hexadecylphosphocholine (HePC), has been shown to inhibit cell proliferation and tumor growth 6-8. Using radiolabelled HePC9 it was possible to show that more than 95% of this compound is membrane-bound10 thereby confirming cellular membranes as the primary target of HePC. Since the exact mechanism(s) of alkylphospholipid actions still remained obscure we determined their influence on phosphatidylcholine biosynthesis. Phosphatidylcholine is the main phospholipid of cellular membranes of eucaryotic cells and its biosynthesis is mainly governed by the rate-limiting enzyme of the CDP-choline pathway, CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15)11,12 The activity of cytidylyltransferase is regulated by reversible translocation to membranes and the translocation process has been shown to be influenced by various lipids13. Furthermore, reversible phosphorylation seems to be involved in enzyme regulation14,15 and cytidylyltransferase is a substrate for mitogen-activated protein kinases 16,17 However, the following paragraph will concentrate on cytidylyltransferase/lipid interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. E. Berdel, Membrane-interactive lipids as experimental anticancer drugs, Br. J. Cancer 64: 208(1991).

    Article  PubMed  CAS  Google Scholar 

  2. H. H. Grunicke, The cell membrane as a target for cancer chemotherapy, Eur. J. Cancer 27: 281 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. V. G. Brunton and P. Workman, Cell-signaling targets for antitumor drug development, Cancer Chemother. Pharmacol 32: 1 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. S. P. Langdon and J. F. Smyth, Inhibition of cell signalling pathways, Cancer Treat. Rev. 21: 65 (1995)

    Article  PubMed  CAS  Google Scholar 

  5. W. E. Berdel, R. Andreesen, and P. G. Munder, Synthetic alkyllysophospholipid analogues: a new class of antitumor agents, in: Phospholipids and Cellular Regulation, J. F. Kuo, ed., CRC Press, Boca Raton (198

    Google Scholar 

  6. C. Unger, E. A. M. Fleer., J. Körting, W. Neumüller, and H. Eibl, Antitumoral activity of alkylphos-phocholines and analogues in human leukemia cell lines, Prog. Exp. Tumor Res. 34: 25 (1992)

    PubMed  CAS  Google Scholar 

  7. C. C. Geilen, R. Haase, K. Buchner, Th. Wieder, F. Hucho, and W. Reutter, The phospholipid analogue, hexadecylphosphocholine, inhibits protein kinase C in vitro and antagonises phorbol ester-stimulated cell proliferation, Eur. J. Cancer 27, 1650 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. C. Unger, H. Eibl, H. W. Breiser, H. W. van Heyden, J. Engel, P. Hilgard, H. Sindermann, M. Peukert, and G. S. Nagel, Hexadecylphosphocholine (D 18506) in the topical treatment of skin metastases: a phase-I trial, Onkologie 11: 295 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. C. C. Geilen, A. Samson, Th. Wieder, H. Wild, and W. Reutter, Synthesis of hexadecylphospho[methyl-14C]-choline, J. Labelled Comp. Radiopharm. 31: 1071 (1992)

    Article  CAS  Google Scholar 

  10. C. C. Geilen, Th. Wieder, A. Haase, W. Reutter, D. M. Morré, and D. J. Morré, Uptake, subcellular distribution and metabolism of the phospholipid analogue hexadecylphosphocholine in MDCK cells, Biochim. Biophys. Acta 1211: 14 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. D. E. Vance, Phosphatidylcholine metabolism, masochistic enzymology, metabolic regulation, and lipoprotein assembly, Biochem. Cell Biol. 68: 1151 (1990)

    Article  PubMed  CAS  Google Scholar 

  12. C. Kent, Regulation of phosphatidylcholine biosynthesis, Prog. Lipid Res. 29: 87 (1990)

    Article  PubMed  CAS  Google Scholar 

  13. R. B. Cornell, Regulation of CTP:phosphocholine cytidylyltransferase by lipids. 1. Negative surface charge dependence for activation. Biochemistry 30: 5873 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. S. L. Pelech and D. E. Vance, Regulation of rat liver cytosolic CTP:phosphocholine cytidylyltransferase by phosphorylation and dephosphorylation,.J. Biol. Chem. 257: 14198(1982).

    PubMed  CAS  Google Scholar 

  15. J. D. Watkins and C. Kent, Phosphorylation of CTP:phosphocholine cytidylyltransferase in vivo, J. Biol. Chem. 265: 2190(1990).

    PubMed  CAS  Google Scholar 

  16. M. Wieprecht, Th. Wieder, C. C. Geilen, and C. E. Orfanos, Growth factors stimulate phosphorylation of CTP:phosphocholine cytidylyltransferase in HeLa cells, FEBS Lett. 353: 221 (1994)

    Article  PubMed  CAS  Google Scholar 

  17. M. Wieprecht, Th. Wieder, C. Paul, C. C. Geilen, and C. E. Orfanos, Evidence for phosphorylation of CTP:phosphocholine cytidylyltransferase by multiple proline-directed protein kinases, J. Biol. Chem., in press

    Google Scholar 

  18. R. Haase, Th. Wieder, C.C. Geilen, and W. Reutter, The phospholipid analogue hexadecylphosphocholine inhibits phosphatidylcholinc biosynthesis in Madin-Darby canine kidney cells, FEBS Lett. 288: 129(1991)

    Article  PubMed  CAS  Google Scholar 

  19. C.C. Geilen, Th. Wieder, and W. Reutter, Hexadecylphosphocholine inhibits translocation of CTP:phosphocholine cytidylyltransferase in Madin-Darby canine kidney cells, J. Biol. Chem. 267: 6719(1992).

    PubMed  CAS  Google Scholar 

  20. Th. Wieder, C. C. Geilen, and W. Reutter, Antagonism of phorbol ester-stimulated phosphatidylcholine biosynthesis by the phospholipid analogue, hexadecylphosphocholine, Biochem. J. 291: 561 (1993)

    PubMed  CAS  Google Scholar 

  21. M. Detmar, C.C. Geilen, Th. Wieder, C.E. Orfanos, and W. Reutter, The phospholipid analogue hexadecylphosphocholine inhibits proliferation and phosphatidylcholine biosynthesis of human epidermal keratinocytes in vitro, J. Invest. Dermatol. 102: 490 (1994)

    Article  PubMed  CAS  Google Scholar 

  22. C.C. Geilen, A. Haase, Th. Wieder, D. Arndt, R. Zeisig, and W. Reutter, Phospholipid analogues-side chain and polar head group-dependent effects on phosphatidylcholine biosynthesis, J. Lipid Res. 35: 625 (1994)

    PubMed  CAS  Google Scholar 

  23. Th. Wieder, A. Haase, C.C. Geilen, and C.E. Orfanos, The effect of two synthetic phospholipids on cell proliferation and phosphatidylcholine biosynthesis in Madin-Darby canine kidney cells, Lipids 30: 389 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. K.P. Boggs, C.O. Rock, and S. Jackowski, Lysophosphatidylcholine attenuates the cytotoxic effects of the antineoplastic phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, J. Biol. Chem. 270: 11612(1995).

    Article  PubMed  CAS  Google Scholar 

  25. M. Mickeleit, Th. Wieder, K. Buchner, C. C. Geilen, J. Mulzer, and W. Reutter, Glyceroglycophos-pholipid (Glc-PC), ein neuartiges glucosidisches Phospholipid, Angew. Chem. 107: 2879 (1995).

    Article  Google Scholar 

  26. Th. Wieder, C. Perlitz, M. Wieprecht, R.T.C. Huang, C.C. Geilen, and C.E. Orfanos, Two new sphingomyelin analogues inhibit phosphatidylcholine biosynthesis by decreasing membrane-bound CTP: phosphocholine cytidylyltransferase levels in HaCaT cells, Biochem. J. 311: 873 (1995)

    PubMed  CAS  Google Scholar 

  27. B. Zheng, K. Oishi, M. Shoji, H. Eibl, W. E. Berdel, J. Hajdu, W. R. Vogler, and J. F. Kuo, Inhibition of protein kinase C, (sodium plus potassium)-activated adenosine triphosphatase, and sodium pump by synthetic phospholipid analogues, Cancer Res. 50: 3025 (1990)

    PubMed  CAS  Google Scholar 

  28. F. Ãœberall, H. Oberhuber, K. Maly, J. Zaknun, L. Demuth, and H. H. Grunicke, Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity, Cancer Res. 51: 807 (1991)

    PubMed  Google Scholar 

  29. W. R. Vogler, E. Whigham, W. D. Bennett, and A. C. Olson, Effect of alkyl-lysophospholipids on phosphatidylcholine biosynthesis in leukemic cell lines, Exp. Hematol. 13: 629 (1985)

    PubMed  CAS  Google Scholar 

  30. D. Berkovic, K. Berkovic, E. A. M. Fleer, H. Eibl, and C. Unger, Inhibition of calcium-dependent protein kinase C by hexadecylphosphocholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine do not correlate with inhibition of proliferation of HL60 and K562 cell lines, Eur J. Cancer 30A: 509 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. F. Mollinedo, C. Gajate, and M.L. Modolell, The ether lipid l-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine induces expression of fos and jun proto-oncogenes and activates AP-1 transcription factor in human leukaemic cells, Biochem. J. 302: 325 (1994)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geilen, C.C., Wieder, T., Orfanos, C.E. (1996). Antiproliferative Phospholipid Analogues Act via Inhibition of Phosphatidylcholine Biosynthesis. In: Vanderhoek, J.Y. (eds) Frontiers in Bioactive Lipids. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5875-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5875-0_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7694-1

  • Online ISBN: 978-1-4615-5875-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics