Skip to main content

Use of Bodipy™-Labeled Sphingolipids to Study Membrane Traffic in Animal Cells

  • Chapter
Frontiers in Bioactive Lipids

Abstract

Fluorescent lipid analogs have been used to study membrane lipid traffic in animal cells for a number of years (reviewed in Pagano and Sleight, 1985; Koval and Pagano, 1991; Hoekstra and Kok, 1992; Koval, 1993; Rosenwald and Pagano, 1993). In this approach, one of the naturally occurring fatty acids of a lipid is replaced with a short-chain fluorescent fatty acid. Most of the resulting fluorescent lipid analogs can be readily integrated into cellular membranes by spontaneous lipid transfer from exogenous sources. The intracellular distribution of the labeled molecules can then be observed in living cells by high resolution fluorescence microscopy,and temporal changes in the distribution of a given lipid and its metabolites can be correlated with changes in its metabolism. This approach has been used to study the uptake, metabolism, and transport of phosphatidylcholine (Sleight and Pagano, 1984), phosphatidylserine and phosphatidylethanolamine (Tanaka and Schroit, 1983; Martin and Pagano, 1987), phosphatidylinositol (Ting and Pagano, 1990, 1991), phosphatidic acid (Pagano and Longmuir, 1985), ceramide (reviewed in Pagano, 1990; Rosenwald and Pagano, 1993), and various other sphingolipids (Koval and Pagano, 1989, 1990; Mayor et al., 1993; Kok et al., 1989; 1991; 1995; Schwarzmann and Sandhoff, 1990) analogs labeled with N-[6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]caproic acid (C6-NBD-).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chattopadhyay, A. and E. London. 1987. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26:39-.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.S., Martin, O.C., and R.E. Pagano. 1995. Internalization of a plasma membrane lipid in human skin fibroblasts: Insights from a sphingomyelin analog which reports concentration changes during endocytosis. Molecular Biology of the Cell. 6: 231

    Google Scholar 

  • Coste, H., M.B. Martel, and R. Got. 1986. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim. Biophys. Acta. 858:6

    Article  PubMed  CAS  Google Scholar 

  • Futerman, A.H., Stieger, B., Hubbard, A.L., and Pagano, R.E. 1990. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J. Biol. Chem. 265: 8650.

    PubMed  CAS  Google Scholar 

  • Futerman, A.H. and Pagano, R.E. 1991. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem. J. 280: 29

    PubMed  CAS  Google Scholar 

  • Hoekstra, D. and J. W. Kok. 1992. Trafficking of glycosphingolipids in eukaryotic cells; sorting and recycling of lipids. Biochim, Biophys. Acta. 1113: 27

    Article  CAS  Google Scholar 

  • Jeckel, D. A. Karrenbauer, R. Birk, R.R. Schmidt, and F. Wieland. 1990. Sphingomyelin is synthesized in the cis Golgi. FEBS (Fed. Eur. Biochem. Soc.) Lett. 261

    Article  CAS  Google Scholar 

  • Jeckel, D., A. Karrenbauer, K.N.J. Burger, G. Van Meer, and F. Wieland. 1992. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J. Cell Biol 117: 259.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, I. D., H. C. Kang, and R. P. Haugland. 1991. Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorephores. Anal. Biochem. 198: 22

    Article  PubMed  CAS  Google Scholar 

  • Kang, H. C and R. P. Haugland. 1989. Spectral properties of 4-sulfonato-3,3’5,5’-tetramethyl-2,2’-pyrromethen-1, 1’-borondifluoride complex (Bodipy), its sodium slat, and protein derivatives. Proc. SPIE Int. Soc. Opt. Eng. 1063: 6

    CAS  Google Scholar 

  • Karolin, J., L. B.-A. Johansson, L. Strandberg, and T. Ny. 1994. Fluorescence and adsorption spectroscopic properties of dipyrrometheneboron difluordie (BODIPY) derivatives in liquids, lipid membranes, and proteins. J. Am. Chem. Soc. 116: 780

    Article  CAS  Google Scholar 

  • Kok, J. W., T. Babia, K. Klappe, and D. Hoekstra. 1995. Fluorescent, short-chain C6-NBD-sphingomyelin, but not C6.-NBD-glucosylceramide, is subject to extensive degradation in the plasma membrane: implications for signal transduction related to cell differentiation. Biochem. J. 309: 90

    PubMed  Google Scholar 

  • Kok, J. W., T. Babia, D. Hoekstra. 1991. Sorting of sphingolipids in the endocytic pathway of HT29 cells. J. Cell Biol. 114: 23

    Article  PubMed  CAS  Google Scholar 

  • Kok, J. W., S. Eskelinen, K. Hoekstra, and D. Hoekstra. 1989. Salvage of glucosylceramide by recycling after internalization along the pathway of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA. 86 989

    Article  PubMed  CAS  Google Scholar 

  • Koval, M. and R. E. Pagano. 1991. Intracellular transport and metabolism of sphingomyelin. Biochim. Biophys. Acta 1082:113.

    Article  PubMed  CAS  Google Scholar 

  • Koval, M. and R. E. Pagano. 1990. Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick, type A fibroblasts. J. Cell Biol. 111: 42

    Article  PubMed  CAS  Google Scholar 

  • Koval, M. and R. E. Pagano. 1989. Lipd recycling between the plasma membrane and intracellular compartments: Transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts. J. Cell Biol. 108 216

    Article  PubMed  CAS  Google Scholar 

  • Koval, M. 1993. Plasma membrane lipid transport in cultured cells: Studies using lipid analogs and model systems. Advances in Cell and Molecular Biology of Membranes 1: 199.

    Google Scholar 

  • Martin, O.C. and Pagano, R.E. 1987. Transbilayer movement of fluorescent analogs of phosphatidylserine and phosphatidylethanolamine at the plasma membrane of cultured cells: Evidence for a protein-mediated and ATP-dependent process(es). J. Biol. Chem. 262: 5890.

    PubMed  CAS  Google Scholar 

  • Martin, O. C. and R. E. Pagano. 1994. Internalization and sorting of a fluorescent analog of Glucosylceramide to the Golgi apparatus of human skin fibroblasts: Utilization of endocytic and nonendocytic transport mechanisms. J. Cell Biol. 125:76

    Article  PubMed  CAS  Google Scholar 

  • Mayor, S., J. F. Presley, and F. R. Maxfield. 1993. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol. 121:125

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J. W. and R. E. Pagano. 1982. Use of resonance energy transfer to study the kinetics of amphiphile transfer between vesicles. Biochmeistry 21: 1721.

    Google Scholar 

  • Pagano, R.E. 1990. The Golgi apparatus: Insights from lipid biochemistry. Biochem. Soc. Trans. 18: 36

    PubMed  CAS  Google Scholar 

  • Pagano, R.E. and Longmuir, K.J. 1985. Phosphorylation, Transbilayer Movement, and Facilitated Intracellular Transport of Diacyl-glycerol are Involved in the Uptake of a Fluorescent Analog of Phosphatidic Acid by Cultured Fibroblasts. J. Biol. Chem. 260: 1909.

    PubMed  CAS  Google Scholar 

  • Pagano, R. E. and R. G. Sleight. 1985. Defining lipid transport pathways in animal cells. Science 229: 1051.

    Article  PubMed  CAS  Google Scholar 

  • Pagano, R. E. and O. C. Martin. 1988. A series of fluorescent N-(Acyl)-sphingosines: Synthesis, physical properties, and studies in cultured cells. Biochemistry 27: 4439.

    Article  PubMed  CAS  Google Scholar 

  • Pagano, R. E., O.C. Martin, H.C. Kang, and R.P. Haugland. 1991. A novel fluorescent ceramide analog for studying membrane traffic in animal cells: Accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113:126

    Article  PubMed  CAS  Google Scholar 

  • Rosenwald, A. G. and R. E. Pagano. 1993. Intracellular transport of ceramide and its metabolites at the Golgi complex: insights from short-chain analogs. Adv. Lipid Res. 26:10

    PubMed  CAS  Google Scholar 

  • Schwarzmann, G. and K. Sandhoff. 1990. Metabolism and intracellular transport of glycosphingolipids. Biochemistry 29: 10865.

    Article  PubMed  CAS  Google Scholar 

  • Sleight, R. G. and R. E. Pagano. 1984. Transport of a fluorescent phosphatidylcholine analog from the plasma membrane to the Golgi apparatus. J. Cell Biol. 99: 74

    Article  PubMed  CAS  Google Scholar 

  • Struck, D. K. and R. E. Pagano. 1980. Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell. J. Biol. Chem. 255: 5404.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y. and A.J. Schroit. 1983. Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages. J. Biol. Chem. 258: 11335.

    PubMed  CAS  Google Scholar 

  • Ting, A.E. and Pagano, R.E. 1990. Detection of a phosphatidylinositol-specific phospholipase C at the surface of Swiss 3T3 cells and its potential role in the regulation of cell growth. J. Biol. Chem. 265: 5337.

    PubMed  CAS  Google Scholar 

  • Ting, A.E. and Pagano, R.E. 1991. Density-dependent inhibition of cell growth is correlated with the activity of a cell surface phosphatidylinositol-specific phospholipase C. Eur. J. Cell Biol. 56: 40

    PubMed  CAS  Google Scholar 

  • Trinchera, M., A. Fabbri, and R. Ghidoni. 1991. Topography of glycosyltransferases involved in the initial glycosylations of gangliosides. J. Biol. Chem. 266: 20907.

    PubMed  CAS  Google Scholar 

  • Wolf, D. E., A. P. Winiski, A. E. Ting, K. M. Bocian, and R. E. Pagano. 1992. Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer. Biochemistry 31: 2865–2873.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pagano, R.E., Chen, Cs. (1996). Use of Bodipy™-Labeled Sphingolipids to Study Membrane Traffic in Animal Cells. In: Vanderhoek, J.Y. (eds) Frontiers in Bioactive Lipids. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5875-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5875-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7694-1

  • Online ISBN: 978-1-4615-5875-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics