Skip to main content

The Role of Ceramide in the Cellular Stress Response

  • Chapter
Frontiers in Bioactive Lipids

Abstract

The cellular response to stressful environmental conditions is complex and only partially understood. Cells can be stressed by nutritional starvation, infection, physical or chemical conditions (e.g. heat, extreme pH), genotoxic drugs, or other conditions. During evolution, various stress responses were preserved to allow cells or organisms to withstand different forms of stress by organizing the repair of proteins and DNA that had been damaged by the particular stressful event. The specific stress response is probably determined and regulated by the nature of the insulting condition. Despite the importance of these processes, our knowledge remains limited1-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Hilt, and D. H. Wolf, Stress-induced proteolysis in yeast, Mol. Microbiol. 6:2437–2442(1992).

    Article  PubMed  CAS  Google Scholar 

  2. A. J. Fornace Jr, J. Jackman, M. C. Hollander, B. Hoffman-Liebermann, and D. A. Liebermann, Genotoxic-stress-response genes and growth-arrest genes, gadd, MyD, and other genes induced by treatments eliciting growth arrest, Ann. N. Y. Acad. Sci. 663:139–153 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. C. E. Canman, C. Y. Chen, M. H. Lee, and M. B. Kastan, DNA damage responses: p53 induction, cell cycle perturbations, and apoptosis., Cold Spring Harb. Symp. Quant. Biol. 59:277–286 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. S. Hakomori, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Anna. Rev. Biochem. 50:733–764 (1981).

    Article  CAS  Google Scholar 

  5. Y. A. Hannun, and R. M. Bell, Functions of sphingolipids and sphingolipid breakdown products in cellular regulation, Science 243:500–507 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. Y. A. Hannun, The Sphingomyelin cycle and the second messenger function of ceramide, J. Biol. Chem. 269:3125–3128 (1994).

    PubMed  CAS  Google Scholar 

  7. R. Kolesnick, and D. W. Golde, The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling, Cell 77:325–328 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. Y. A. Hannun, C. R. Loomis, A. H. Merrill, Jr., and R. M. Bell, Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and human platelets, J. Biol. Chem. 261:12604–12609 (1986).

    PubMed  CAS  Google Scholar 

  9. Y. A. Hannun, and C. M. Linardic, Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids, Biochim. Biophys. Acta Bio-Membr. 1154:223–236(1993).

    Article  CAS  Google Scholar 

  10. M. Pushkareva, L. M. Obeid, and Y. A. Hannun, Ceramide: an endogenous regulator of apoptosis and growth suppression, Immunol. Today 16:294–297 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. S. Jayadev, B. Liu, A. E. Bielawska, J. Y. Lee, F. Nazaire, M. Y. u. Pushkareva, L. M. Obeid, and Y. A. Hannun, Role for ceramide in cell cycle arrest., J. Biol. Chem. 270:2047–2052 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. G. S. Dbaibo, M. Y. Pushkareva, S. Jayadev, J. K. Schwarz, J. M. Horowitz, L. M. Obeid, and Y. A. Hannun, Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest., Proc. Natl. Acad. Sci. USA 92:1347–1351 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. L. M. Obeid, C. M. Linardic, L. A. Karolak, and Y. A. Hannun, Programmed cell death induced by ceramide, Science 259:1769–1771 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. W. D. Jarvis, R. N. Kolesnick, F. A. Fornari, R. S. Traylor, D. A. Gewirtz, and S. Grant, Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway, Proc. Natl. Acad. Sci. USA 91:73–77 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. T. Okazaki, R. M. Bell, and Y. A. Hannun, Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation, J. Biol. Chem. 264:19076–19080(1989).

    PubMed  CAS  Google Scholar 

  16. T. Okazaki, A. Bielawska, R. M. Bell, and Y. A. Hannun, Role of ceramide as a lipid mediator of 1α,25-dihydroxyvitamin D3-induced HL-60 cell differentiation, J. Biol. Chem. 265:15823–15831 (1990).

    PubMed  CAS  Google Scholar 

  17. M.-Y Kim, C. Linardic, L. Obeid, and Y. Hannun, Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation, J. Biol. Chem. 266:484–489 (1991).

    PubMed  CAS  Google Scholar 

  18. F. Niculescu, H. Rus, S. Shin, T. Lang, and M. L. Shin, Generation of diacylglycerol and ceramide during homologous complement activation, J. Immunol. 150:214–224 (1993).

    PubMed  CAS  Google Scholar 

  19. L. R. Ballou, C. P. Chao, M. A. Holness, S. C. Barker, and R. Raghow, Interleukin-1-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide, J. Biol. Chem. 267:20044–20050 (1992).

    PubMed  CAS  Google Scholar 

  20. S. Mathias, A. Younes, C.-C Kan, I. Orlow, C. Joseph, and R. N. Kolesnick, Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1β, Science 259:519–522 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. L. M. Boucher, K. Wiegmann, A. Futterer, K. Pfeffer, T. Machleidt, S. Schütze, T. W. Mak, and M. Krönke, CD28 signals through acidic sphingomyelinase., J. Exp. Med. 181:2059–2068 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. M. G. Cifone, R. De Maria, P. Roncaioli, M. R. Rippo, M. Azuma, L. L. Lanier, A. Santoni, and R. Testi, Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase., J. Exp. Med. 180:1547–1552 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. C. G. Tepper, S. Jayadev, B. Liu, A. Bielawska, R. Wolff, S. Yonehara, Y. A. Hannun, and M. F. Seldin, Role of ceramide as an endogenous mediator of Fas-induced cytotoxicity, Proc. Natl. Acad. Sci. USA 92:8443–8447 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. J. C. Strum, G. W. Small, S. B. Pauig, and L. W. Daniel, 1-β-D-arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells, J. Biol. Chem. 269:15493–15497 (1994).

    PubMed  CAS  Google Scholar 

  25. J. Zhang, N. Alter, J. C. Reed, C. Borner, L. M. Obeid, and Y. A. Hannun, Bcl-2 interrupts the ceramide-mediated pathway of cell death, Proc. Natl. Acad. Sci., USA (1996) in press.

    Google Scholar 

  26. R. Bose, M. Verheij, A. Haimovitz-Friedman, K. Scotto, Z. Fuks, and R. N. Kolesnick, Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals, Cell 82:405–414 (1996).

    Article  Google Scholar 

  27. A. Haimovitz-Friedman, C. C. Kan, D. Ehleiter, R. S. Persaud, M. McLoughlin, Z. Fuks, and R. N. Kolesnick, Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis., J. Exp. Med. 180:525–535 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. J. Quintans, J. Kilkus, C. L. McShan, A. R. Gottschalk, and G. Dawson, Ceramide mediates the apoptotic response of WEHI 231 cells to anti-immunoglobulin, corticosteroids and irradiation, Biochem. Biophys. Res. Commun. 202:710–714 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Chang, A. Abe, and J. A. Shayman, Ceramide formation during heat shock: A potential mediator of αB-crystallin transcription, Proc. Natl. Acad. Sci., USA 92:12275–12279(1995).

    Article  PubMed  CAS  Google Scholar 

  30. G. J. Pronk, K. Ramer, P. Amiri, and L. T. Williams, Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER, Science 271:808–810(1996).

    Article  PubMed  CAS  Google Scholar 

  31. S. Schütze, K. Potthoff, T. Machleidt, D. Berkovic, K. Wiegmann, and M. Krönke, TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced ‘acidic’ sphingomyelin breakdown., Cell 71:765–776 (1992).

    Article  PubMed  Google Scholar 

  32. A. Bielawska, H. M. Crane, D. Liotta, L. M. Obeid, and Y. A. Hannun, Selectivity of ceramide-mediated biology: lack of activity of erythro-dihydroceramide, J. Biol. Chem. 268:26226–26232 (1993).

    PubMed  CAS  Google Scholar 

  33. G. S. Dbaibo, L. M. Obeid, and Y. A. Hannun, TNFα signal transduction through ceramide: dissociation of growth inhibitory effects of TNFα from activation of NF-κB, J. Biol. Chem. 268:17762–17766 (1993).

    PubMed  CAS  Google Scholar 

  34. R. T. Dobrowsky, and Y. A. Hannun, Ceramide stimulates a cytosolic protein phosphatase, J. Biol. Chem. 267:5048–5051 (1992).

    PubMed  CAS  Google Scholar 

  35. R. T. Dobrowsky, C. Kamibayashi, M. C. Mumby, and Y. A. Hannun, Caramide activates heterotrimeric protein phosphatase 2A, J. Biol. Chem. 268:15523–15530 (1993).

    PubMed  CAS  Google Scholar 

  36. R. A. Wolff, R. T. Dobrowsky, A. Bielawska, L. M. Obeid, and Y. A. Hannun, Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction, J. Biol. Chem. 269:19605–19609 (1994).

    PubMed  CAS  Google Scholar 

  37. J. D. Fishbein, R. T. Dobrowsky, A. Bielawska, S. Garrett, and Y. A. Hannun, Ceramide-mediated biology and CAPP are conserved in Saccharomyces cerevisiae, J. Biol. Chem. 268:9255–9261 (199

    PubMed  CAS  Google Scholar 

  38. J. Liu, S. Mathias, Z. Yang, and R. N. Kolesnick, Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramide-activated protein kinase, J. Biol. Chem. 269:3047–3052 (1994).

    PubMed  CAS  Google Scholar 

  39. J. Lozano, E. Berra, M. M. Munido, M. T. Diaz-Meco, I. Dominguez, L. Sanz, and J. Moscat, Protein kinase C ζ isoform is critical for κB-dependent promoter activation by sphingomyelinase, J. Biol Chem. 269:19200–19202 (1994).

    PubMed  CAS  Google Scholar 

  40. R. A. Weinberg, The retinoblastoma gene and cell growth control, Trends Biochem. Sci. 15:199–202(1990).

    Article  PubMed  CAS  Google Scholar 

  41. E. Harlow, For our eyes only, Nature 359:270–271 (1992).

    Article  PubMed  CAS  Google Scholar 

  42. R. A. Weinberg, The retinoblastoma protein and cell cycle control, Cell 81:323–330 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. J. W. Ludlow, J. Shon, J. M. Pipas, D. M. Livingston, and J. A. DeCaprio, The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T, Cell 60:387–396 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. D. W. Goodrich, N. P. Wang, Y.-W Qian, E. Y.-H.P. Lee, and W.-H Lee, The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle, Cell 67:293–302 (1991).

    Article  PubMed  CAS  Google Scholar 

  45. J. A. DeCaprio, Y. Furukawa, F. Ajchenbaum, J. D. Griffin, and D. M. Livingston, The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression, Proc. Natl. Acad. Sci. USA 89:1795–1798 (1992).

    Article  PubMed  CAS  Google Scholar 

  46. J. R. Nevins, E2F: a link between the Rb tumor suppressor protein and viral oncoproteins, Science 258:424–429 (1992).

    Article  PubMed  CAS  Google Scholar 

  47. J. Y. Wang, E. S. Knudsen, and P. J. Welch, The retinoblastoma tumor suppressor protein, Adv. Cancer Res. 64:25–85 (1994).

    Article  CAS  Google Scholar 

  48. S. Bagchi, P. Raychaudhuri, and J. R. Nevins, Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation, Cell 62:659–669 (1990).

    Article  PubMed  CAS  Google Scholar 

  49. S. Chellappan, V. B. Kraus, B. Kroger, K. Munger, P. M. Howley, W. C. Phelps, and J. R. Nevins, Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product, Proc. Natl. Acad. Sci. USA 89:4549–4553 (1992).

    Article  PubMed  CAS  Google Scholar 

  50. J. W. Ludlow, Interactions between SV40 large-tumor artigen and the growth suppressor proteins pRB and p53, FASEB J. 7:866–871 (1993).

    PubMed  CAS  Google Scholar 

  51. K. Vousden, Interactions of human papillomavirus transforming proteins with the products of tumor suppressor genes, FASEB J. 7:872–879 (1993).

    PubMed  CAS  Google Scholar 

  52. Q. P. Dou, B. An, and P. L. Will, Induction of a retinoblastoma phosphatase activity by anticancer drugs accompanies p53-independent G1 arrest and apoptosis., Proc. Natl. Acad. Sci. USA 92:9019–9023 (1995).

    Article  PubMed  CAS  Google Scholar 

  53. C. S. Rani, A. Abe, Y. Chang, N. Rosenzweig, A. R. Saltiel, N. S. Radin, and J. A. Shayman, Cell cycle arrest induced by an inhibitor of glucosylceramide synthase. Correlation with cyclin-dependent kinases., J. Biol. Chem. 270:2859–2867 (1995).

    Article  PubMed  CAS  Google Scholar 

  54. D. L. Vaux, and A. Strasser, The molecular biology of apoptosis, Proc. Natl. Acad. Sci., USA 93:2239–2244 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer 26:239–257 (1972).

    Article  PubMed  CAS  Google Scholar 

  56. A. H. Wyllie, Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature 284:555–556 (1980).

    Article  PubMed  CAS  Google Scholar 

  57. L. E. Gerschenson, and R. J. Roteilo, Apoptosis: a different type of cell death, FASEB J. 6:2450–2455 (1992).

    PubMed  CAS  Google Scholar 

  58. S. J. Martin, and D. R. Green, Protease activation during apoptosis: death by a thousand cuts?, Cell 82:349–352 (1995).

    Article  PubMed  CAS  Google Scholar 

  59. A. M. Chinnaiyan, C. G. Tepper, M. F. Seldin, K. O’Rourke, F. C. Kischkel, S. Hellbardt, P. H. Krammer, M. E. Peter, and V. M. Dixit, FADD/MORT1 is a common mediator of CD 95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis, J. Biol. Chem. 271:4961–4965 (1996).

    Article  PubMed  Google Scholar 

  60. M. Enari, R. V. Talanian, W. W. Wong, and S. Nagata, Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis, Nature 380:723–726 (1996).

    Article  PubMed  CAS  Google Scholar 

  61. Z. N. Oltvai, and S. J. Korsmeyer, Checkpoints of dueling dimers foil death wishes, Cell 79:189–192 (1994).

    Article  PubMed  CAS  Google Scholar 

  62. A. Bielawska, C. M. Linardic, and Y. A. Hannun, Ceramide-mediated biology: determination of structural and stereospecific requirements through the use of N-acyl-phenylaminoalcohol analogs, J. Biol. Chem. 267:18493–18497 (1992).

    PubMed  CAS  Google Scholar 

  63. S. H. Kaufmann, S. Desnoyers, Y. Ottaviano, N. E. Davidson, and G. G. Poirier, Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis., Cancer Res 53:3976–3985 (1993).

    PubMed  CAS  Google Scholar 

  64. Y. A. Lazebnik, S. H. Kaufmann, S. Desnoyers, G. G. Poirier, and W. C. Earnshaw, Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE., Nature 371:346–347 (1994).

    Article  PubMed  CAS  Google Scholar 

  65. T. Fernandes-Alnemri, G. Litwack, and E. S. Alnemri, CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme., J. Biol. Chem. 269:30761–30764 (1994).

    PubMed  CAS  Google Scholar 

  66. M. Tewari, L. T. Quan, K. O’R ourke, S. Desnoyers, Z. Zeng, D. R. Beidler, G. G. Poirier, G. S. Salvesen, and V. M. Dixit, Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase., Cell 81:801–809 (1995).

    Article  PubMed  Google Scholar 

  67. D. W. Nicholson, A. Ali, N. A. Thornberry, J. P. Vaillancourt, C. K. Ding, M. Gallant, Y. Gareau, P. R. Griffin, M. Labelle, Y. A. Lazebnik, N. A. Munday, S. M. Raju, M. E. Smulson, T. Yamin, V. L. Yu, and D. K. Miller, Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis., Nature 376:37–43 (1995).

    Article  PubMed  CAS  Google Scholar 

  68. M. J. Smyth, D. K. Perry, J. Zhang, G. G. Poirier, Y. A. Hannun, and L. M. Obeid, prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of bcl-2, Biochem. J. (1996) in press.

    Google Scholar 

  69. S. J. Martin, S. Takayama, A. J. McGahon, T. Miyashita, J. Corbeil, R. N. Kolesnick, J. C. Reed, and D. R. Green, Inhibition of ceramide-induced apoptosis by Bcl-2, Cell Death Differ. 2:253–257 (1995).

    PubMed  CAS  Google Scholar 

  70. N. Karasavvas, R. K. Erukulla, R. Bittman, R. Lockshin, D. Hockenbery, and Z. Zakeri, BCL-2 suppresses ceramide-induced cell killing, Cell Death Differ. 3:149–151 (1996).

    PubMed  CAS  Google Scholar 

  71. C. A. Ray, R. A. Black, S. R. Kronheim, T. A. Greenstreet, P. R. Sleath, G. S. Salvesen, and D. J. Pickup, Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme., Cell 69:597–604 (1992).

    Article  PubMed  CAS  Google Scholar 

  72. M. Tewari, and V. M. Dixit, Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product., J. Biol. Chem. 270:3255–3260 (1995).

    Article  PubMed  CAS  Google Scholar 

  73. J. M. Kyriakis, P. Banerjee, E. Nikolakaki, T. Dai, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. R. Woodgett, The stress-activated protein kinase subfamily of c-Jun kinases, Nature 369:156–160 (1994).

    Article  PubMed  CAS  Google Scholar 

  74. J. K. Westwick, A. E. Bielawska, G. Dbaibo, Y. A. Hannun, and D. A. Brenner, Ceramide activates the stress-activated protein kinases, J. Biol. Chem. 270:22689–22692 (1995).

    Article  PubMed  CAS  Google Scholar 

  75. Z. Xia, M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg, Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis., Science 270:1326–1331 (1995).

    Article  PubMed  CAS  Google Scholar 

  76. M. Verheij, R. Bose, X. H. Lin, B. Yao, W. D. Jarvis, S. Grant, M. J. Birrer, E. Szabo, L. I. Zon, J. M. Kyriakis, A. Haimovitz-Friedman, Z. Fuks, and R. N. Kolesnick, Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis, Nature 380:75–79 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dbaibo, G.S., Obeid, L.M., Hannun, Y.A. (1996). The Role of Ceramide in the Cellular Stress Response. In: Vanderhoek, J.Y. (eds) Frontiers in Bioactive Lipids. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5875-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5875-0_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7694-1

  • Online ISBN: 978-1-4615-5875-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics