Skip to main content

Phosphatidylinositol Transfer Protein Function in the Yeast saccharomyces Cerevisiae

  • Chapter
  • 64 Accesses

Abstract

All eukaryotic cells examined to date exhibit an array of cytosolic polypeptides that have the ability to catalyze the energy-independent transfer of lipids and/or phospholipids between membrane bilayers in vitro (Wirtz, 1991; Bankaitis et al., 1996). These phospholipid transfer proteins (PLTPs) are classified as a function of their lipid headgroup specificities in the in vitro transfer reaction, and phosphatidylinositol transfer proteins (PITPs) represent a class of oligospecific PLTPs. PITPs effect efficient transfer of PI or the zwitterionic phospholipid phosphatidylcholine (PC), and a distinct preference is exhibited towards PI as transfer substrate. While the physiological functions of PITPs, and PLTPs in general, have presented a long-standing mystery for reasons reviewed elsewhere (Wirtz, 1991; Bankaitis et al., 1996), much progress has been made in the past several years on this problem. The discovery that the Saccharomyces cerevisiae SEC14 gene product (Secl4p) is the yeast PITP has provided the first opportunity to dissect the in vivo function of a PITP (Bankaitis et al., 1990). Immediate insights were forthcoming on this issue as genetic and biochemical analyses had identified Secl4p as a cytosolic factor that is essential for viability of the yeast cell because it is required for the biogenesis of secretory vesicles dedicated to the transport of secretory glycoproteins from a late Golgi compartment (Novick et al., 1980; Bankaitis et al., 1989; Cleves et al., 1991). The outstanding questions that remain include the following: (i) what is the mechanism of Secl4p function in the stimulation of protein export from the yeast Golgi complex?, and (ii) how does Secl4p harness its PI and PC transfer activities to biological function? In this manuscript, we will discuss the recent progress we have made on these issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alb, J.G., Jr., Kearns, M.A., and Bankaitis, V.A., 1996, Phospholipid metabolism and membrane dynamics. Curr. Op. Cell Biol. 8: In Press.

    Google Scholar 

  • Bankaitis, V.A., Aitken, J.R., Cleves, A.E. and Dowhan, W., 1990, An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347: 561.

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis, V.A., Fry, M.R., Cartee, R.T., and Kagiwada, S., 1996, Phospholipid Transfer Proteins: Emerging Roles In Vesicle Trafficking, Signal Transduction, and Metabolic Regulation, R.G. Landes Co., Austin.

    Google Scholar 

  • Bankaitis, V.A., Malehorn, D.E., Emr, S.D. and Greene, R., 1989, The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. 10: 1271.

    Article  Google Scholar 

  • Cleves, A.E., McGee, T.P., Whitters, E.A., Champion, K.M., Aitken, J.R., Dowhan, W., Goebl, M. and Bankaitis, V.A., 1991, Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64: 789.

    Article  PubMed  CAS  Google Scholar 

  • Cleves, A.E., Novick, P.J. and Bankaitis, V.A., 1989, Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J. Cell Biol. 109: 2939.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, E., Thomas, G.M.H., Ball, A., Hiles, I., and Cockroft, S., 1995, Phosphatidylinositol transfer protein dictates the rate of inositol trisphosphate production by promoting synthesis of PIP2. Current Biology 5:775.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, P.A., Van Der Westhuyzen, D.R., Goldstein, J.L., and Brown, M. S., 1989, Purification of oxysterol binding protein from hamster liver cytosol. J. Biol. Chem. 264: 9046.

    PubMed  CAS  Google Scholar 

  • Dickeson, S.K., Lim, C.N., Schuyler, G.T., Dalton, T.P., Helmkamp, G.M., Jr., and Yarbrough, L.R., 1989, Isolation and sequence of cDNA clones encoding rat phosphatidylinositol transfer protein. J. Biol. Chem, 264:16557.

    PubMed  CAS  Google Scholar 

  • Goldstein, J.L. and Brown, M.S., 1990, Regulation of the mevalonate pathway. Nature 343: 425.

    Article  PubMed  CAS  Google Scholar 

  • Hay, J.C. and Martin, T.F.J., 1993, Phosphatidylinositol transfer protein is required for ATP-dependent priming of Ca2+-activated secretion. Nature 366: 572.

    Article  PubMed  CAS  Google Scholar 

  • Hay, J.C, Fisette, P.L., Jenkins, G.H., Fukami, K., Takenawa, T., Anderson, R.A., and Martin, T.F.J., 1995, ATP-Dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374: 173.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, B., Brown, J.L., Sheraton, J., Fortin, N. and Bussey, H., 1994, A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein. Yeast 10: 341.

    Article  PubMed  CAS  Google Scholar 

  • Kagiwada, S., Kearns, B.G., McGee, T.P., Fang, M., Hosaka, K,, and Bankaitis, V.A., 1996, The yeast BSD2-1 mutation influences both the cellular requirement for phosphatidylinositol transfer protein function and the activity of the pathway for derepression of phospholipid biosynthetic gene expression. Genetics: In Press.

    Google Scholar 

  • Kauffmann-Zeh, A., Thomas, G.M.H., Ball, A., Prosser, S., Cockroft, S., and Hsuan, J.J., 1995, Requirement of phosphatidylinositol transfer protein in epidermal growth factor signaling. Science 268:1188.

    Article  PubMed  CAS  Google Scholar 

  • McGee, T.P., Skinner, H.B., Whitters, E.A., Henry, S.A. and Bankaitis, V.A., 1994, A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes, J. Cell Biol. 124: 273–287.

    Article  PubMed  CAS  Google Scholar 

  • Novick, P., Field, C, and Schekman, R., 1980, Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21: 205.

    Article  PubMed  CAS  Google Scholar 

  • Novick, P., Osmond, B.C., and Botstein, D., 1989, Suppressors of yeast actin mutations. Genetics 121: 659.

    PubMed  CAS  Google Scholar 

  • Ohashi, M., de Vries, K.J., Frank, R., Snoek, G., Bankaitis, V., Wirtz, K., and Huttner, W.B., 1995, A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature 311: 544.

    Article  Google Scholar 

  • Ridgway, N.D., Dawson, P.A., Ho, Y.K., Brown, M.S. and Goldstein, J.L., 1992, Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J. Cell Biol. 116: 307.

    Article  PubMed  CAS  Google Scholar 

  • Ridgway, N.D. and Lagace, T.A., 1995, Brefeldin A renders Chinese hamster ovary cells insensitive to transcriptional suppression by 25-hydroxycholesterol. J. Biol Chem. 270: 8023.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, H.B., Alb, J.G. Jr., Whitters, E.A., Helmkamp, G.M., Jr., and Bankaitis, V.A., 1993, Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO J. 12:4115.

    Google Scholar 

  • Skinner, H.B., McGee, T.P., McMaster, C., Fry, M.R., Bell, R.M. and Bankaitis, V.A., 1995, Phosphatidylinositol transfer protein stimulates yeast Golgi secretory function by inhibiting choline-phosphate cytidylyltransferase activity. Proc. Natl. Acad. Sci. 92: 112.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G.M.H., Cunningham, E., Fensome, A., Ball, A., Totty, N.F., Truong, O., Hsuan, J.J., and Cockroft, S., 1993, An essential role for phosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid s ignaling. Cell 74:919.

    Article  PubMed  CAS  Google Scholar 

  • Whitters, E.A., Cleves, A.E., McGee, T.P., Skinner, H.B. and Bankaitis, V.A., 1993, SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J. Cell Biol 122: 79.

    Article  PubMed  CAS  Google Scholar 

  • Wirtz, K.W.A., 1991, Phospholipid transfer proteins. Annu. Rev. Biochem. 60: 73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kearns, M.A., Fang, M., Rivas, M., Kearns, B.G., Kagiwada, S., Bankaitis, V.A. (1996). Phosphatidylinositol Transfer Protein Function in the Yeast saccharomyces Cerevisiae. In: Vanderhoek, J.Y. (eds) Frontiers in Bioactive Lipids. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5875-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5875-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7694-1

  • Online ISBN: 978-1-4615-5875-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics