Skip to main content

Comments on the Feasibility of Achieving Scientific Break-Even with a Plasma Focus Machine

  • Chapter
Current Trends in International Fusion Research

Abstract

This paper discusses some aspects of dense plasma focus (DPF) operation relevant to its extrapolation to hundreds of MJ energy storage. Experiments show, that the main fusion production mechanism is based on the plasma target-beam interaction i.e.: the pinch and the expanding column form hot and dense plasma target, that confines the hundred keV ion beams, produced during the column instability phase. Using a new compilation of neutron yield scaling with capacitor bank energies (Wo) it is expected that the scientific break-even will occur for Wo of a few hundreds of MJ, not less than Wo=50 MJ, assuming that plasma parameters will evolve in the same manner as for the existing DPF machines.

Strength of DPF research program lies in the fact that, it is based on two complementary and realistic lines of R&D actions. The first line of action considers two independent scaling tests of DPF performance at ten MJ energy level in Russia and USA. Both tests can use existing energy storages and chambers. The scaling tests will additionally demonstrate the operation of DPF in the insulator free version and the use of inductive storage. The second line of action (already implemented) is to use the DPFs, as intense and pulsed sources of neutrons, X-rays and ion beams. Selected examples of 100 kJ class DPF (and below) are shown to demonstrate the potentials of industrial applications and near-term payoffs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Filippov, N.V., Filippova, T.I., and Vinogradov, V.P., 1962, Dense, High Temperature Plasma in a Non-Cy-lindrical Z-Pinch Compression, Nuclear Fusion Suppl. (1962) Part 2, p.577.

    Google Scholar 

  2. Mather, J.W., 1965, Formation of a High-Density Deuterium Plasma Focus, Physics Fluids 8: 336; see also J. Marshall and I. Henins (1965), Fast Plasma from a Coaxial Gan, Nuclear Fusion Supplement, IAEA-CN-21 (1966), Vol. 2, p. 449.

    Article  ADS  Google Scholar 

  3. Kies, W., 1986, Power Limits for Dynamical Pinch Discharges, Plasma Phys. Controlled Fusion 28: 1645.

    Article  ADS  Google Scholar 

  4. Brzosko, J.B., and Klobukowska, J., 1983, Self-Sustaining Partial Discharges in Argon at the Dielectric Surface, IEEE Trans. El-18: 420.

    Google Scholar 

  5. Herold, H., et al., 1985, Two Phases of Neutron Production in the POSEIDON Plasma Focus, Nuclear Fusion Supplement (IAEA-CN-44) p.579.

    Google Scholar 

  6. Erhardt, J., Kirchesch, P., Hubner, K., and Rager, J.P., 1982, Light-Scattering in the Frascati Plasma Focus, Physics Lett., 89A: 285.

    Article  ADS  Google Scholar 

  7. Rager, J.P., et al., 1981, Experiments on Neutron Production Phase of Frascati 1-MJ Plasma Focus, Nuclear Fusion Supplement (IAEA-CN-38) p.579.

    Google Scholar 

  8. Jager, U., and Herold, H., 1978, Fast Ions Kinetics and Fusion Reaction Mechanism in the Plasma Focus, Nuclear Fusion 27: 407.

    Article  Google Scholar 

  9. Ivanov, V.D., et al., 1981, Experimental Studies of Plasma Focus, Nuclear Fusion Supplement (IAEA-CN-38) p.161.

    Google Scholar 

  10. Vinogradov, V.P., Golubtshikov, D.G., Filippov, N.V, and Filippova, T.I., 1967, Toepler Device with Pulsed Ruby Laser for the Plasma Sheath Study, Teplofizika Vysokih Temperatur 5: 343.

    Google Scholar 

  11. Brzosko, J.S., Klobukowska, J., and Robouch, B.V., 1987, A Macroscopic Study of the Neutron, Gamma-and X-Ray Emissivity in the Frascati Plasma Focus, Fusion Technology 12: 71.

    Google Scholar 

  12. Decker, G., et al., 1979, Neutron Emission Parameters in Plasma Focus Devices, Nuclear Fusion Supplement (I AEA-CN-37) p. 135.

    Google Scholar 

  13. Bernard, A., Coudeville, A., Jolas, A., Launspach, J., and de Mascureau, J., 1975, Experimental studies of the Plasma Focus and Evidence for Nonthermal Processes, Physics of Fluids, 18: 180.

    Article  ADS  Google Scholar 

  14. Conrads, H., Cloth, P., Demmeler, M., and Hecker, R., 1972, Velocity Distribution of the Ions Producing Neutrons in a Plasma Focus, Physics of Fluids 15: 209.

    Article  ADS  Google Scholar 

  15. Gratreau, P., Luzzi, G., Maisonnier, Ch., Pecorella, F., Rager, J.P., Robouch, B.V., and Samuelli, M., 1971, Structure of the Dense Plasma Focus, Part II: Neutron Measurements and Phenomenological Description, Nuclear Fusion Supplement (IAEA-CN-28) p. 523.

    Google Scholar 

  16. Schmidt, R., and Herold, H., 1986, A Method for time resolved Neutron Spectroscopy on Short Pulsed Fusion Neutron Sources, Plasma Phys. Controlled Fusion, 29: 523.

    Article  ADS  Google Scholar 

  17. Gentilini, A., et. al., 1980, Comparison of Four Calibration Techniques of a Silver Activated Geiger Counter for the Determination of the Neutron Yield on the Frascati Plasma Focus, Nuclear Instr. Meth., 172:541.

    Article  ADS  Google Scholar 

  18. Lehner, G., 1970, Reaction Rates and Energy Spectra for Nuclear Reactions in High Energy Plasmas, Z.Physik 232: 174.

    Article  ADS  Google Scholar 

  19. Bernstein,M.J., and Comisar, G.G., 1972, Neutron Energy and Flux Distribution from a Crossed-Field Acceleration Model of Plasma Focus and Z-Pinch Discharges, Physics of Fluids 13: 700.

    Article  ADS  Google Scholar 

  20. Nardi, V, Bortolotti, A., Brzosko, J.S., Esper, M., Luo, C.M., Pedrielli, F., Powell, C, and Zeng, D., 1988, Simulated Acceleration and Confinement of Deuterons in Focused Discharges-Part I, IEEE Trans. PS-16: 368.

    ADS  Google Scholar 

  21. Brzosko, J.S., Nardi, V, Brzosko, J.R., and Goldstein, D., 1994, Observation of Plasma Domains with Fast Ions and Enhanced Fusion in Plasma-Focus Discharges, Physics Lett. A192: 250.

    Article  ADS  Google Scholar 

  22. Yamada, Y., Kitagawa, Y, Yokoyama, M., 1985, High-Energy Deuteron Beam Generated by a Plasma Focus Device, J. Applied Phys. 58: 188.

    Article  ADS  Google Scholar 

  23. Gullickson, R.L., Luce, J.S., Sahlin, H.L., 1977, Operation of a Plasma-Focus Device with D2 and 3He, J. Applied Phys. 46:3718.

    Article  ADS  Google Scholar 

  24. Filippov, N.V., Belaieva, I.F., Filippova, T.I., 1978, Measurements of the Effective Temperature of Ions in Plasma Focus by Measurements of Reaction Rate in the D2-3He Mixture, Fizika Plasmy (Sov.) 4: 1364.

    Google Scholar 

  25. Brzosko, J.S., Rager, J.P., Robouch, B.V., Bahr, A.H., Klapdor, H.V., Anderson, E., and Herges, P., 1983, Measurements of the D(d,n) and 3He(d,p) Reaction Yields for the 1-MJ Plasma Focus Device Operating with a D2-3He Gas Mixture, Nuclear Technology/Fusion 4: 263.

    Google Scholar 

  26. Filippov, N.V., Filippova, T.I., Khutoretskaia, I.V., Krivtsov, V.A., Mialton, V.V., Vinogradov, V.P., 1996, Megajule Plasma Focus as Efficient X-Ray Source, Physics Lett. 211: 168.

    Article  ADS  Google Scholar 

  27. Conrads, H., Salge, J., 1983, On Repetitive Operation of a Plasma Focus, Energy Storage, Compression, and Switching (Plenum Press, NY), p.87.

    Google Scholar 

  28. Imshennik, V.S., Filippov, N.V., and Filippova, T.I., 1973, Similarity Theory and Increased Neutron Yield in a Plasma Focus, Nuclear Fusion 13: 929.

    Article  Google Scholar 

  29. Degnan, J.H., et. al., 1993, Compact Toroid Formation, Compression and Acceleration, Physics of Fluids, B5: 2938.

    ADS  Google Scholar 

  30. Degnan, J.H., 1995, Formation, Compression and Acceleration of magnetized Plasmas, in Evaluation of Current Trends in Fusion Research (Publ. Plenum Publ. Corp (published in the same volume)

    Google Scholar 

  31. Peterkin Jr, R.E., Degnan, J.H., Hussey, T.H., Roderick, N.F., and Turchi, P.J., 1993, A Long Conduction Time Compact Torus Plasma Opening Switch, IEEE Trans. Plasma Science 21: 522.

    Article  ADS  Google Scholar 

  32. Chernyshev, V.K., at al., 1986, Change in the Parameters of a Plasma Focus when the Capacitive Energy source is Replaced by an Inductor, Sov. Phys. Tech. Phys. 31: 558.

    Google Scholar 

  33. Aziziv, E.A., Lototsky, A.P., Nastoyashchy, A.F., Folippova, T.I., and Filippov, N.V., 1994, Pulsed — High-Power Neutron Source Based on a magnetic Energy Storage, private communication from State Centre TRINITY (Russia); see also Dense Z-Pinches (Ed. Haines, M., and Knight, A., Publ. American Inst. Phys., New York, (1994) p. 271.

    Google Scholar 

  34. Nardi, V., Brzosko, J.S., and Powell, Ch., 1992, Neutron Sources of the Advanced Plasma Focus Type for Demonstration Tests of Safe Reactors, Los Alamos Nat. Lab. Raport LA-UR-92-3552.

    Google Scholar 

  35. Neff, W., Eberle, J., Holz, R., Lebert, R., and Richter, F., 1989, The Plasma Focus as a Soft X-Ray Source for Microscopy and Lithography, Proc. SPIE 1140: 13.

    Article  ADS  Google Scholar 

  36. Kato, Y, and Be, S.H., 1986, Generation of Soft X-Rays Using a Rare Gas-Hydrogen Plasma Focus and Its Application to X-Ray Lithography, Appl. Physics Lett. 48: 686.

    Article  ADS  Google Scholar 

  37. Brzosko, J.S., Robouch, B.V., Ingrosso, L., Bortolotti, A., and Nardi, V., 1992, Advantages and Limits of 14-MeV Neutron Radiography, Nuclear Instr. Meth., B72: 119.

    ADS  Google Scholar 

  38. Holmes, R.J., Phillips, P.L., Roczniok, A.F., and Waddington, P.J., 1987, A Prototype Bauxite Analyser Based on Fast-Neutron-Activation Analysis, Nuclear Geophisics 1: 41.

    Google Scholar 

  39. Nardi V., Brzosko, J.S., Powell, Ch., and Bortolotti, A., 1993, High Fluence Pulsed Neutron Source for Neutron Interrogation, Proc. Int. Symp. on Substance Identification Technologies (Innsbruck, 1993) in press (publ. by IAEA, Vienna).

    Google Scholar 

  40. Brzosko, J.S., and Nardi, V., 1991, High Yield of 12C(d,n)13N and 14N(d,n)15O Reactions in the Plasma Focus Pinch, Physics Lett. A155: 162; see also Physics Lett. A192: 250 (1994).

    Article  ADS  Google Scholar 

  41. Brzosko, J.S., Nardi, V., Goldstein, D.B., and Brzosko, J.R., 1993, High Z-Low Z Nuclear Reactions in the Plasma Focus Pinch, IEEE Conf. Record (1993 ICOPS) 93CH3334-0: 188.

    Google Scholar 

  42. Teller, E., 1991, Adress at Int. Conf. of Plasma Focus Applications (Hoboken, 1991); see also Los Alamos Nat. Lab. Raport LA-UR-92-3552 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brzosko, J.S., Degnan, J.H., Filippov, N.V., Freeman, B.L., Kiutlu, G.F., Mather, J.W. (1997). Comments on the Feasibility of Achieving Scientific Break-Even with a Plasma Focus Machine. In: Panarella, E. (eds) Current Trends in International Fusion Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5867-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5867-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7690-3

  • Online ISBN: 978-1-4615-5867-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics