Skip to main content
  • 244 Accesses

Abstract

In toroidal magnetic fusion experiments, including the tokamak, gross confinement is provided by static magnetic fields, which cannot do work on the plasma. The addition of electric fields along the minor radius of a toroidal plasma, to provide magnetoelectric toroidal confinement, has been reported in an Electric Field Bumpy Torus (EFBT), and in recent papers at a meeting of the IAEA Technical Committee on Tokamak Plasma Biasing. Such radial electric fields introduce the possibility of doing work on a toroidal plasma. This work, which can be provided by relatively inexpensive DC power supplies, can manifest itself in charged-particle transport radially inward against the density gradient, with concurrent improvements in density or containment time; this work can also manifest itself in heating the ions and electrons to high energies by E/B drift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roth, J.R.:“Ion Heating and Containment in an Electric Field Bumpy Torus (EFBT) Plasma”, Nuclear Instruments and Methods, vol. 207, Nos. 1, 2 (1983) pp. 271–299.

    Google Scholar 

  2. Roth, J. R., Krawczonek, W. M., Powers, E. J., Kim, Y.C., and Hong, J., Y:“Ion Confinement and Transport in a Toroidal Plasma with Externally Imposed Radial Electric Fields”, NASA TP 1411, (1979).

    Google Scholar 

  3. J. R. Roth:“Summary of the IAEA Technical Committee Meeting on Tokamak Plasma Biasing, Montreal, Canada, Sept. 8-10, 1992”, Fusion Technology, vol. 23 (1993) pp 246–252.

    Google Scholar 

  4. L. Oren, S. Talmadge, R. J. Taylor, D. Whelan, and S. J. Zweben:“Electrostatic Confinement in Macrotor”, APS Bulletin, vol. 24, No. 8(1979) p. 1109.

    Google Scholar 

  5. Vladimir Demchenko, Editor:“Tokamak Plasma Biasing”, Proceedings of the IAEA Technical Committee Meeting at Centre Canadien de Fusion Magnétique, Montreal, Canada, Sept. 8-10, 1992. Available from: Dr. Vladimir Demchenko, IAEA, Wagramerstrasse 5, P. O. Box 100, A-1400 Vienna, Austria.

    Google Scholar 

  6. M. J. Schafî2, et al.:“Edge Effects During DIII-D Divertor Biasing.” IBID. Ref. 5 above, pp 340–374.

    Google Scholar 

  7. J. R. Roth,“Electrostatic Biasing and Radially-Inward Transport in a Magnetoelectrically Confined Toroidal Plasma”, IBID Ref. 5 above, pp 131–187.

    Google Scholar 

  8. Roth, J. R.:“Origin of Hot Ions Observed in a Modified Penning Discharge”, Phys. Fluids, vol. 16, no. 2 (1973) pp. 231–236.

    Article  ADS  Google Scholar 

  9. , J. R.:“Hot Ion Production in a Modified Penning Discharge.” IEEE Trans. Plasma Sci., vol. PS-1, no. 1 (1973) pp. 34–45.

    Article  ADS  Google Scholar 

  10. Roth, J. R.:“Energy Distribution Functions of Kilovolt Ions in a Modified Penning Discharge”, Plasma Phys., vol. 15, no. 10 (1973) pp. 995–1005.

    Article  ADS  Google Scholar 

  11. Roth, J. R.:“Experimental Study of Spectral Index, Mode Coupling, and Energy Cascading in a Turbulent, Hot-Ion Plasma”, Phys. Fluids, vol. 14, no. 10 (1971) pp. 2193–2202.

    Article  ADS  Google Scholar 

  12. Roth, J. R.; Gerdin, G. A.; and Richardson, R. W.:“Characteristics of the NASA Lewis Bumpy Torus Plasma Generated with Positive Applied Potentials”, IEEE Trans. Plasma Sci., vol. PS-4, no. 3 (1976) pp. 166–176. (Also NASA TND-8114, 1976.)

    Article  ADS  Google Scholar 

  13. Roth, J.R.; and Gerdin, G. A.:“Characteristics of the NASA Lewis Bumpy Torus Plasma Generated with High Positive or Negative Applied Potentials.” Plasma Phys., vol. 19, no. 5, (1977) pp. 423–446. (Also NASA TND-8211, 1976.)

    Article  ADS  Google Scholar 

  14. Roth, J. R.:“Factors Affecting Ion Kinetic Temperature, Number Density, and Containment Time in the NASA Lewis Bumpy-Torus Plasma.” NASA TN D8466, (1977).

    Google Scholar 

  15. Roth, J. R.:“Effects of Applied DC Radial Electric Fields on Particle Transport in a Bumpy Torus Plasma.” IEEE Trans. Plasma Sci., vol. PS-6, no. 2 (1978) pp. 158–165.

    Article  ADS  Google Scholar 

  16. Powers, E. J.:“Spectral Techniques for Experimental Investigation of Plasma Diffusion due to Polychromatic Fluctuations.” Nucl. Fusion, vol. 14, no. 5 (1974) pp. 749–752.

    Article  Google Scholar 

  17. Smith, D. E.; Powers, E. J.; and Caldwell, G. S.:“Fast-Fourier-Transform Spectral Analysis Techniques as a Plasma Fluctuation Diagnostic Tool.” IEEE Trans. Plasma Sci. vol. PS-2, no. 4 (1974) pp. 261–272.

    Article  ADS  Google Scholar 

  18. Singh, C. M.; et al.:“Fluctuation Spectra in the NASA Lewis Bumpy Torus Plasma.” NASA TP-1257, (1978).

    Google Scholar 

  19. Singh, C.M.; et al.:“Low-Frequency Fluctuation Spectra and Associated Particle Transport in the NASA Lewis Bumpy Torus Plasma.” NASA TP-1258 (1978).

    Google Scholar 

  20. Roth, J. R.; et al.:“Inward Transport of a Toroidally Confined Plasma Subject to Strong Radial Electric Fields.” Phys. Rev. Lett., vol. 40, (1977) pp. 1450–1453. (Also NASA TM-73800, 1977.)

    Article  ADS  Google Scholar 

  21. Roth, J. R.; et al.:“A 12-Coil Superconducting Bumpy Torus Magnet Facility for Plasma Research.” Fifth Applied Superconductivity Conference, IEEE, Inc., (1972) pp. 361–366.

    Google Scholar 

  22. Roth, J. R.; et al.:“Characteristics and Performance of a Superconducting Bumpy Torus Magnet Facility for Plasma Research.” NASA TN D-7353 (1973).

    Google Scholar 

  23. Roth, J. R.:“A Model for Particle Confinement in a Toroidal Plasma Subject to Strong Radial Electric Fields.” NASA TM X-73814 (1977).

    Google Scholar 

  24. Krawczonek, W. M.; et al.“A Data Acquisition and Handling System for the Measurement of Radial Plasma Transport Rates.” NASA TM-78849 (1977).

    Google Scholar 

  25. Roth, J. R.; and Krawczonek, W. M.:“Paired Comparison Tests of the Relative Signals Detected by Capacitive and Floating Langmuir Probes in Turbulent Plasma from 0.2 to 10 MHz”, Rev. Sei. Instrum., vol. 42, no. 5 (1971) pp. 589–594.

    Article  ADS  Google Scholar 

  26. Smith, D. E.; and Powers, E. J.:“Experimental Determination of the Spectral Index of a Turbulent Plasma from Digitally Computed Power Spectra.” Phys. Fluids, vol. 16, no. 8 (1973) pp. 1373–1374.

    Article  ADS  Google Scholar 

  27. Kim, Y. C; and Powers, E. J.:“Effects of Frequency Averaging on Estimates of Plasma Wave Coherence Spectra.” IEEE Trans. Plasma Sci., vol. PS-5 (1977) pp. 31–40.

    Article  ADS  Google Scholar 

  28. Kim, Y. C; Wong, W. F.; Powers, E. J.; and Roth, J. R.:“Extension of the Coherence Function to Quadratic Models.” Proceedings of the IEEE. Vol. 67, No. 3 (1979) pp 428–29.

    Article  Google Scholar 

  29. Roth, J. R.; Alexeff, I; and Mallavarpu, R.:“New Mechanism for Electromagnetic Emission near the Geometric Mean Plasma Frequency.” Phys. Rev. Lett., Vol. 43, No. 6 (1979) pp 445–449.

    Article  ADS  Google Scholar 

  30. Kim, Y. C; Powers, E. J.; Hong, J. Y: Roth, J. R.; and Krawczonek, W. M.:“The Effect of a Weak Vertical Magnetic Field on Fluctuation-Induced Transport in a Bumpy Torus Plasma.” Nuclear Fusion, Vol. 20, No. 2, (1980) pp 171–176.

    Article  ADS  Google Scholar 

  31. Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y; and Kim, Y. C.:“The Role of Fluctuation-Induced Transport in a Toroidal Plasma with Strong Radial Electric Fields.” Plasma Physics, Vol. 23, No. 6, (1981) pp 509–514.

    Article  ADS  Google Scholar 

  32. Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y C; and Hong, J. Y.:“Fluctuations and Turbulence in an Electric Field Bumpy Torus Plasma.” Journal of Applied Physics, Vol. 52, No. 4, (1981) pp 2705–2713.

    Article  ADS  Google Scholar 

  33. J. L. Vossen and W. Kern, Eds.: Thin Film Processes, Academic Press, NY (1978) ISBN 0-12-728250-5.

    Google Scholar 

  34. R. C. Eberhart and R. A. Seban:“The Energy Balance for a High Current Argon Arc”, Int. J. Heat and Mass Transfer, Vol. 9 (1966) pp 939–949.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roth, J.R. (1997). Magnetoelectric Toroidal Confinement. In: Panarella, E. (eds) Current Trends in International Fusion Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5867-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5867-5_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7690-3

  • Online ISBN: 978-1-4615-5867-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics