Skip to main content

Magnetized Target Fusion

An Overview of the Concept

  • Chapter

Abstract

Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magnetic field and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field is the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landshoff, R.,“Transport Phenomena in Completely Ionized Gas in the Presence of a Magnetic Field”, Los Alamos National Lab report LA-466 (1945); Phys. Rev. 79 (1949) 904.

    Google Scholar 

  2. Panarella, E., Current Trends in International Fusion Research, Washington, D.C., (these Proceedings, p. 211).

    Google Scholar 

  3. Lindemuth, I.R., and Kirkpatrick, R.C.,“Parameter Space for Magnetized Fuel Targets in Inertial Confinement Fusion,” Nucl. Fusion 23 (1983) 263.

    Article  Google Scholar 

  4. Kirkpatrick, R.C., Lindemuth, I.R., and Ward, M.J., “Magnetized Target Fusion, an Overview,” to be published in Fusion Technology (1995).

    Google Scholar 

  5. Lindl, J.D.,“Physics of Ignition for ICF Capsules,” Inertial Confinement Fusion Course and Workshop (Varenna, Italy, 1988 A. Caruso and E. Sindoni, ed.).

    Google Scholar 

  6. S.A. Colgate, A.G. Petschek, and R.C. Kirkpatrick, “Minimum Energy for Fusion Ignition, A Realistic Goal”, Los Alamos National Laboratory report LA-UR-92-2599 (1992).

    Google Scholar 

  7. Widner, M.M.,“Neutron Production from Relativistic Electron Beam Targets”, Bull. Am. Phys. Soc. 22 (1977) 1139.

    Google Scholar 

  8. M.A. Sweeny and A.V. Farnsworth, “High-Gain, Low-Intensity ICF Targets for a Charged-Particle Beam Fusion Driver”, Nuclear Fusion 21 (1981) 41.

    Article  ADS  Google Scholar 

  9. Sweeny, M.A., Proceedings, First International Symposium for the Evaluation on Current Trends in Fusion Research, Washington, D.C., November (1994).

    Google Scholar 

  10. I.R. Lindemuth and M.M. Widner,“Magnetohydrodynamic Behavior of Thermonuclear Fuel in a Preconditioned Electron Beam Imploded Target,” Physics of Fluids 24 (1981) 753.

    Article  ADS  Google Scholar 

  11. A.R. Sherwood, B.L. Freeman, R.A. Gerwin, T.R. Jarboe, et al.,“Fast Liner Proposal,” Los Alamos Scientific Laboratory report LA-6707-P (August 1977).

    Google Scholar 

  12. B. Feinberg, “An Experimental Study of a Hot Plasma in Contact with a Cold Wall”, Plasma Physics 18 (1976)265.

    Article  ADS  Google Scholar 

  13. Dawson, J.M., Okuda, H., and Rosen, B.,“Collective Transport in Plasmas”, in Methods in Computational Physics 16(1976)281.

    Google Scholar 

  14. A.M. Buiko, V.K. Chernychev, V.A. Demidov, Yu.N. Dolin, S.F. Garanin, V.A. Ivanov, V.P. Korchagin, M.V. Lartsev, V.l. Mamyshev, A.P. Mochalov, V.N. Mokhov, I.V. Morozov, N.N. Moskvichev, E.S. Pavlovsky, S.V. Pak, S.V. Trusillo, G.I. Volkov, V.B. Yakubov, V.V. Zmushko,“Investigations of Thermonuclear Magnetized Plasma Generation in the Magnetic Implosion System MAGO,” in “Physics of High Energy Densities,” MEGAGAUSS VI, Albuquerque, NM (1992).

    Google Scholar 

  15. Lindemuth, I.R., Current Trends in International Fusion Research, (these Proceedings, p. 543).

    Google Scholar 

  16. P.T. Sheehey, J.E. Hammel, I.R. Lindemuth, D.W. Scudder, J.S. Schlacter, R.H. Loveberg, and R.A. Riley, Jr.,“Two-Dimensional Direct Simulation of Deuterium-Fiber-Initiated Z-Pinches with Detailed Comparison to Experiment,” Phys. Fluids 4 (1992) 3698.

    Article  Google Scholar 

  17. M.S. Ward, Los Alamos National Laboratory memo X-l-93-…. (1993).

    Google Scholar 

  18. Panarella, E., Proceedings, First International Symposium for the Evaluation on Current Trends in Fusion Research, Washington, D.C., November (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kirkpatrick, R.C., Lindemuth, I.R. (1997). Magnetized Target Fusion. In: Panarella, E. (eds) Current Trends in International Fusion Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5867-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5867-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7690-3

  • Online ISBN: 978-1-4615-5867-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics