Skip to main content

Analysis of the Fusion Breakeven Conditions for D-T Plasmas of Prescribed Temperature Evolution

  • Chapter
Current Trends in International Fusion Research
  • 252 Accesses

Abstract

In the past several years, the Lawson criteria (Proc. Phys. Soc. B70, 6, 1957) have provided guidelines to the fusion community on the conditions required for energy breakeven from a hot plasma. These criteria state that, in a pulsed system, breakeven can be achieved if the plasma temperature exceeds a certain critical number (30 million °K for deuterium-tritium reactions), and the reaction is sustained for a sufficient time τE such that nτE > 1014 cm−3 sec, where n is the particle density. In the present study, the complete pulsed system is analyzed from which breakeven is required, i.e., source from which energy flows into a plasma sink, and plasma sink from which energy returns to the source. The case is considered where the a particles escape from the plasma, and the alternative case where they are retained. The analysis departs from the conventional one because it introduces conduction losses from heat transfer theory rather than through the 3nkT/03C4;E term, and therefore the containement time τE does not play an explicit role in the breakeven conditions. These are now determined by particle density, temperature temporal profile, and dimension of the plasma. The analysis confirms the requirement of a threshold temperature for breakeven. However, it adds another threshold element, a particle density in excess of 1016 cm−3, below which breakeven cannot be achieved under realistic reactor conditions. Although a spherical geometry is considered here, such as the spherical pinch plasma configuration (J. Fusion Energy 13, 45, 1994), the analysis can be extended to the toroidal or other plasma geometries, when the appropriate heat conduction loss term is introduced.

In light of these results, the analysis of Lawson and successive interpretations have been re-examined. It is found that they have limited validity for a pulsed system, but are better suited for steady-state reactor operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Lawson. Some Criteria for a Power Producing Thermonuclear Reactor. Proc. Phys. Soc. B70, 6 (1957).

    ADS  Google Scholar 

  2. R. G. Mills. Lawson Criteria. IEEE Trans. Nucl. Science NS-18, 205 (1971).

    Article  ADS  Google Scholar 

  3. B. C. Maglich, and R. A. Miller. Generalized Criterion for Feasibility of Controlled Fusion and Its Application to Nonideal DD Systems. J. Appl. Phys. 46, 2915 (1975).

    Article  ADS  Google Scholar 

  4. F. F. Chen, J. M. Dawson, B. D. Fried, H. P. Furth, and M. N. Rosenbluth. Comments on’ Generalized Criterion for Feasibility of Controlled Fusion and Its Application to Nonideal DD Systems’. J. Appl. Phys. 48, 415 (1977).

    Article  ADS  Google Scholar 

  5. T. J. Dolan. Fusion Research. Principles, Experiments and Technology, (Pergamon Press, New York, 1982), pp. 73–100.

    Google Scholar 

  6. R.A. Gross.Fusion Energy, (John Wiley&Sons, New York, 1984), pp. 38–41.

    Google Scholar 

  7. T. Kammash. Fusion Reactor Physics. Principles and Technology, (Ann Arbor Science Publishing, Ann Arbor, 1975), pp. 21–23.

    Google Scholar 

  8. G. H. Miley. Fusion Energy Conversion, (American Nuclear Society, 1976), pp. 393–394.

    Google Scholar 

  9. J. R. Roth. Introduction to Fusion Eneigy, (Ibis Publishing, Chalottesville, Virginia, 1986), pp. 223–282.

    Google Scholar 

  10. J. Raeder, K. Borrass, R. Bünde, W. Dänner, R. Ktingelhēfer, L. Lengyel, F. Leuterer, M. Sēll. Controlled Nuclear Fusion, (John Wiley&Sons, Chichester, 1986), pp. 210–212.

    Google Scholar 

  11. J. Wesson. Tokamaks, (Clarendon Press, Oxford, 1987), pp. 8–11.

    Google Scholar 

  12. E. Panarella, and P. Savic. Scaling Laws for Spherical Pinch Experiments. J. Fusion Energy 3, 199 (1983).

    Article  Google Scholar 

  13. E. Panarella. The Spherical Pinch. J. Fusion Energy 13, 45 (1987).

    Google Scholar 

  14. H. Chen, J. Chen, B. Hilko, and E. Panarella. Numerical Comparison Between the ICF and the ICF-Spheri-cal Pinch. J. Fusion Energy 13, 45 (1994).

    Article  Google Scholar 

  15. S. Glasstone, and R. H. Lovberg. Controlled Thermonuclear Reactions, (D. Van Nostrand, 1960), pp. 20–32.

    Google Scholar 

  16. L. C. Thomas. Fundamentals of Heat Transfer (Prentice Hall, 1980), p. 9.

    Google Scholar 

  17. R.W. Conn. First Wall and Divertor Plate Material Selection in Fusion Reactors. J. of Nuclear Materials 76&77, 103 (1978).

    Article  ADS  Google Scholar 

  18. L. Spitzer, Jr. Physics of Fully Ionized Gases, (Interscience Publishers, 1962), p. 144.

    Google Scholar 

  19. L. Spitzer, Jr. Physics of Fully Ionized Gases, (Interscience Publishers, 1962), p. 128.

    Google Scholar 

  20. L. Spitzer, Jr. Physics of Fully Ionized Gases, (Interscience Publishers, 1962), p. 145.

    Google Scholar 

  21. J.K. Roberts, and A.R. Miller. Heat and Thermodynamics, (Blackie&Son, 1961), p. 289.

    Google Scholar 

  22. L.C. Thomas. Fundamentals of Heat Transfer (Prentice Hall, 1980), p. 654.

    Google Scholar 

  23. L.R. Ingersoll, O.J. Zobel, and A.C. Ingersoll (1948). Heat Condution, (McGraw-Hill, New York), p. 36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Panarella, E. (1997). Analysis of the Fusion Breakeven Conditions for D-T Plasmas of Prescribed Temperature Evolution. In: Panarella, E. (eds) Current Trends in International Fusion Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5867-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5867-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7690-3

  • Online ISBN: 978-1-4615-5867-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics