Skip to main content

Formation, Compression, and Acceleration of Magnetized Plasmas

  • Chapter
Current Trends in International Fusion Research

Abstract

Compression and acceleration of magnetized plasmas is relevant to fusion for two reasons. Certain types of magnetized plasmas can be compressed and accelerated without fluid instability growth. These are magnetized plasmas rings or compact toroids1,2. Because of their stability, they can be compressed and accelerated over meters of distance and several microseconds of time, enabling economic scaling to much higher energy operation. Other types of implosions and compressions, e.g., Z-pinches, are limited by instability growth3 to much shorter acceleration distances (a few cm) and times (less than 100 nanoseconds), making it very expensive to scale their operating energies to the fusion regime. An important second advantage of magnetized plasmas is that discussed by Lindemuth and Kirkpatrick in their magnetized target fusion (MTF) concept4. Reduced electron thermal conduction losses and increased alpha energy deposition result in reduced requirements of fuel density-radius product for achieving fusion ignition. In this paper, we discuss two experimental efforts at the Phillips Laboratory relevant to this topic. These are our Compact Toroid2,5,6,7 and Solid Liner/Working Fluid8,910,11 efforts. Though these efforts have potential fusion application, their present support is for the applications of intense X-ray generation and achieving high density and pressure in the laboratory, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.W. Hartman and J.H. Hammer, New type of collective acceleration. Phys.Rev.Lett., 48:929–932, April 1982.

    Article  ADS  Google Scholar 

  2. J.H. Degnan, R.E. Peterkin, Jr., G.P. Baca, J.D. Beason, D.E. Bell, G. Bird, S.K. Coffey, M.E. Dearborn, D. Dietz, M.R. Douglas, S.E. Englert, T.J. Englert, D. Gale, J.D. Graham, K.E. Hackett, J.H. Holmes, T.W. Hussey, G.F. Kiuttu, F.M. Lehr, G.J. Marklin, B.W. Mullins, D.W. Price, N.F. Roderick, E.L. Ruden, M. Scott, S.W. Seiler, W. Sommars, C.R. Sovinec, and P.J. Turchi, Compact toroid formation, compression, and acceleration. Phys. Fluids B, 5(8):2938, August 1993.

    Article  ADS  Google Scholar 

  3. T.W. Hussey, N.F. Roderick, and D.A. Kloc, Scaling of (MHD) instabilities in imploding plasma liners. J. Appl. Phys., 51:1452,1980.

    Article  ADS  Google Scholar 

  4. I.R. Lindemuth and R.C. Kirkpatrick, Parameter space for magnetized fuel targets in inertial confinement fusion. Nuclear Fusion, 23(3):263, 1983.

    Article  Google Scholar 

  5. J.H. Degnan, B.W. Mullins, J.D. Beason, M.E. Dearborn, D. Dietz, K.E. Hackett, J.L. Holmes, E.L. Ruden, D.W. Price, C.R. Sovinec, G. Bird, S.K. Coffey, S.W. Seiler, G.F. Kiuttu, R.E. Peterkin, Jr., N.F. Roderick, and P.J. Turchi, Compact toroid formation experiments at the weapons laboratory. In ISPP-8 “Piero Caldi-rola”. Physics of Alternative Magnetic Confinement Schemes, pages 965–973, Bologna, 1991. SIF

    Google Scholar 

  6. J.H. Degnan, G.P. Baca, D.E. Bell, G. Bird, A.L. Chesley, et al, Compression of compact toroids in conical-coaxial geometry. Fusion Technology 27(2), 107 (1995).

    Google Scholar 

  7. G.F. Kiuttu, J.H. Degnan, R.E. Peterkin, Jr., E.L. Ruden, F.M. Lehr, et al, Acceleration and compression of compact toroid plasmas. Invited paper at Beams ′94 Conference, San Diego, 20-24 June, 1994.

    Google Scholar 

  8. J.H. Degnan, W.L. Baker, M.L. Alme, C. Boyer, J.S. Buff, et al, Multi-megajoule electromagnetic implosion of shaped solid-density liners. Fusion Technology 27(2), 115 (1995).

    Google Scholar 

  9. J.H. Degnan, F.M. Lehr, J.D. Beason, G.P. Baca, D.E. Bell, et al, Electromagnetic implosion of spherical liner. Physical Review Letters 74, 98 (1995).

    Article  ADS  Google Scholar 

  10. F.M. Lehr, A. Alaniz, J.D. Beason, L.C. Carswell, J.H. Degnan, J.F. Crawford, S.E. Englert, T.J. Englert, J.M. Gahl, J.H. Holmes, T.W. Hussey, G.F. Kiuttu, B.W. Mullins, R.E. Peterkin, Jr., N.F. Roderick, and P.J. Turchi, Formation of plasma working fluids for compression by liner implosions. J.Appl.Phys. 75(8), p. 3769 (April 1994).

    Article  ADS  Google Scholar 

  11. F.M. Lehr, J.H. Degnan, D. Dietz, S.E. Englert, T.J. Englert, J.D. Graham, J.J. Havranek, T.W. Hussey, J.M. Messerschmitt, C.A. Outten, R.E. Peterkin, Jr., N.F. Roderick, U. Shumlak, P.J. Turchi, The formation of a high density working fluid for solid liner implosions. IEEE Transactions on Plasma Science (Accepted).

    Google Scholar 

  12. J.B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys.Rev.Lett., 33:1139, 1974.

    Article  ADS  Google Scholar 

  13. R.E. Reinovsky, W.L. Baker, Y.G. Chen, J. Holmes, and E.A. Lopez, in Digest of Technical Papers: Fourth IEEE International Pulsed Power Conference, 6–8 June 1983, Albuquerque, NM, edited by M.F. Rose and T.H. Martin (The Institute of Electrical and Electronics Engineers, New York, 1983), p. 196.

    Google Scholar 

  14. J.D. Graham, D. Gale, W. Sommars, M. Scott, and Y.G. Chen, in Digest of Technical Papers: Eighth IEEE International Pulsed Power Conference, 17-19 June 1991, San Diego. CA, edited by R. White and K. Prestwich (The Institute of Electrical and Electronics Engineers, New York, 1991), p. 990.

    Chapter  Google Scholar 

  15. M.R. Brown, P.K. Loewenhardt, J. Yee, D.R. Derkits, and P.M. Bellan, High velocity compact torus injector for the TEXT tokamak. Bull.Am.Phys.Soc 39, p. 1596 (1994).

    Google Scholar 

  16. P.R. Chiang, R.A. Lewis, G.A. Smith, J.M. Dailey, S. Chakrabarti, K.I. Higman, D. Bell, J.H. Degnan, T.W. Hussey, and B.W. Mullins. Target compression by working fluids driven with solid liner implosions. J.Appl.Phys. 76(2), p. 637 (July 1994).

    Article  ADS  Google Scholar 

  17. V.K. Chernyshev and V.N. Mokhov, On the progress in the creation of powerful magnetic energy sources for thermonuclear target implosion. In R. White and K. Prestwich, editors, Digest of Technical Papers: Eighth IEEE International Pulsed Power Conference, pages 395–410, New York, NY, 1991, Institute of Electrical and Electronics Engineers.

    Google Scholar 

  18. W.L. Baker, J.H. Degnan, J.D. Beason, G. Bird, C.B. Boyer, et al, Current delivery and radiation yield in plasma flow switch driven implosions. Fusion Technology 27(2), 124 (1995).

    Google Scholar 

  19. R.E. Peterkin, Jr., J.H. Degnan, T.W. Hussey, N.F. Roderick, and P.J. Turchi, A long conduction time compact torus plasma opening switch. IEEE Trans. Plasma Sci. 21(5), p. 522 (Oct 1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Degnan, J.H. et al. (1997). Formation, Compression, and Acceleration of Magnetized Plasmas. In: Panarella, E. (eds) Current Trends in International Fusion Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5867-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5867-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7690-3

  • Online ISBN: 978-1-4615-5867-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics