Skip to main content

The Inertial Electrostatic Confinement Approach to Fusion Power

  • Chapter
Book cover Current Trends in International Fusion Research

Abstract

Inertial electrostatic confinement (IEC) of a non-Maxwellian beam-dominated plasma for fusion was originally proposed in the 1950s, but since then, only sporadic work has been devoted to the subject. Nevertheless, recent experiments have shown that small IEC devices are well-suited for commercial applications as a portable low-level neutron source for activation analysis. However, the scaling to a high- power fusion reactor is uncertain, due to the lack of experimental data with higher input currents. Three key issues need to be resolved: the stability of multiple-potential-well structures, the confinement time of energetic ions trapped in such wells, and the protection of grid structures during high-power operation. Conceptual design studies that assume a positive resolution of these issues show, however, that the resulting reactor would be economically attractive and very versatile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Farnsworth, U.S. Patent #3,258,402, June 28, 1966; U.S. Patent #3,386,883, June 4, 1968.

    Google Scholar 

  2. R. Hirsch, J. Appl. Phys., 38, 4522 (1967).

    Article  ADS  Google Scholar 

  3. G.H. Miley, et al., Dense Z-Pinches, AIP Conf. Proc. #299, eds. M. Haines and A. Knight, AIP Press, New York, 675–688 (1994).

    Chapter  Google Scholar 

  4. G.H. Miley, et al., Experimental and Theoretical Studies of Inertial Electrostatic Confinement, Final Report, DOE/LANL 9-XG2-45958 (1995).

    Google Scholar 

  5. R.W. Bussard, Fusion Tech., 19, 2, 273–293 (1991).

    Google Scholar 

  6. J.H. Nadler, G.H. Miley, et al., Fusion Tech., 21, 1639–1643 (1992).

    Google Scholar 

  7. Y. Gu, J.B. Javedani, G.H. Miley, Fusion Tech., 26, 929–932 (1994).

    Google Scholar 

  8. G.H. Miley, A.J. Satsangi, Y. Yamamoto, H. Nakashima, and J.B. Javedani, 15th Symposium on Fusion Engineering, IEEE No. 93CH3348-0, 1, 161–164 (1993).

    Google Scholar 

  9. R.W. Bussard, Final Report, EPRI-RP-8016-12 (1993).

    Google Scholar 

  10. G.H. Miley, A. Satsangi, J. Javedani, and Y. Yamamoto, Seventh Intern. Conf. on Emerging Nucl. Energy Systems (ICENES’ 93), ed. H. Yasuda, World Scientific, Singapore, 66–70 (1994).

    Google Scholar 

  11. A.J. Satsangi, G.H. Miley, J.B. Javedani, H. Nakashima, and Y Yamamoto, AIP Conf. Proc. 301: 11th Symp. on Space Nucl. Power and Propulsion, eds. M.S. El-Genk and M.D. Hoover, Conf. 940101, AIP Press, 1297-1302 (1994). Also see G.H. Miley, et al. 1st BNCT Workshop.

    Google Scholar 

  12. R.W. Bussard and L.W. Jameson, AIP Conf. Proc. 301: 1 lth Symp. on Space Nucl. Power and Propulsion, eds. M.S. El-Genk and M.D. Hoover, Conf. 940101, AIP Press, 1289–1296 (1994).

    Google Scholar 

  13. Mora, M. Hulin, L. He, A. Sainz, C. Butzow, D. Worthington, E. Schaefer, T. Moschetti, and G.H. Miley, Trans. ANS, (Philadelphia, PA, 23-29 June 1995). In Press.

    Google Scholar 

  14. A. Von Engel, Electric Plasmas: Their Nature and Uses, Taylor & Francis, Ltd, New York, 121–127 (1983).

    Google Scholar 

  15. T.A. Hochberg, “Characterization and Modeling of the Gas Discharge in an SFID Neutron Generator,” M.S. Thesis,Department of Nuclear Engineering, Univ. of Illinois, Urbana, IL (1992).

    Google Scholar 

  16. J.H. Nadler, G.H. Miley, Y Gu, and T. Hochberg, Fusion Tech., 21, 1639 (1992).

    Google Scholar 

  17. D. Smithe, Mission Research Corporation Report, MRC/WDC-R-226, Mission Research Corporation, Washington, DC (1990).

    Google Scholar 

  18. K. King and R.W. Bussard, Energy/Matter Conversion Corporation Report, EMC2-1191-03, EMC2, Manassas, VA (1991).

    Google Scholar 

  19. R.A. Nebel, L. Turner, R.W. Bussard, J. Bates, H.R. Lewis, and G.H. Miley, Bult. APS, 1582 (1992).

    Google Scholar 

  20. T.N. Tiouririne, R.A. Nebel, L. Turner, W.D. Nystrom, R.W. Bussard, G.H. Miley, Y Yamamoto, J. Bates, and H.R. Lewis, “Inertial-Electrostatic Confinement Studies, 1993 Intern. Sherwood Fusion Theory Conf., Newport, RÏ (28-31 March 1993).

    Google Scholar 

  21. I.V. Tzonev, “Light Intensity Measurement: Mathematical Modeling,” 1st Specialist Workshop on IEC Fusion,”FSL Report #513, Urbana, IL (21-24 July 1993).

    Google Scholar 

  22. I.V. Tzonev, G.H. Miley, and R.A. Nebel, ICPIG Abstract.

    Google Scholar 

  23. C.K. Birdsall, et al., Reference Manual Version 2.0, Plasma Theory and Simulation Group, Electronics Research Laboratory, Univ. of California, Berkeley, CA (1990).

    Google Scholar 

  24. R.W. Bussard and N.A. Krall, Fusion Tech., 26, 1326–1336 (1994).

    Google Scholar 

  25. N.A. Krall, Fusion Tech., 22, 42–49 (1992).

    Google Scholar 

  26. R.W. Bussard, Final Report, NASA/NAS 3-26711, 2 vols. (1993).

    Google Scholar 

  27. R.W. Bussard, IEC Study Report, DOE/LANL 9-XG2-Y5957-1 (1993).

    Google Scholar 

  28. W.M. Nevins, “Can Inertial Electrostatic Confinement Work Beyond the Ion-Ion Collisional Time Scale?”, Physics of SCIF Workshop, Santa Fe, NM (12-14 January 1995).

    Book  Google Scholar 

  29. T.H. Rider, “Collisional Electron Effects and Power Balance,” Physics of SCIF Workshop, Santa Fe, NM (12-14 January 1995).

    Google Scholar 

  30. J.P. Van Devender and D.L. Cook, Science, 232, 831 (1986).

    Article  ADS  Google Scholar 

  31. N.A. Krall, “Polywelf Experimental Results and Interpretation,” Physics of SCIF Workshop, Santa Fe, NM (12-14 January 1995).

    Google Scholar 

  32. L.P. Wainwright, R.D. Durst, R.J. Fonck, and T.A. Thorson, Bult. APS, 39, 7, 1740 (1994). See also T.A. Thorson, R.A. Buckles, R.D. Durst, R.J. Fonck, and L.P. Wainwright, Bult. APS, 39, 7, 1740 (1994).

    Google Scholar 

  33. O.A. Lavrent, ’ev,“Electrostatic and Electromagnetic High-Temperature Plasma Traps,”trans. T.J. Dolan, in Electromagnetic Confinement of Plasmas and the Phenomenology of Relativistic Electron Beams, L.C. Marshall and H. Sahlin, eds., Ann. New York Acad. Sci., 251, 322 (1975). See also the paper by T.J. Dolan, this proceedings.

    Google Scholar 

  34. B.C. Maglich, T.-F. Chuang, C. Powell, J. Nering, and A. Wilmerding, Report #SAFE-94-104, Advanced Physics Corporation, Irvine, CA (1994).

    Google Scholar 

  35. D.C. Barnes, “Penning Trap Concept and Scaling,” Physics of SCIF Workshop, Santa Fe, NM (12-14 January 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miley, G.H. (1997). The Inertial Electrostatic Confinement Approach to Fusion Power. In: Panarella, E. (eds) Current Trends in International Fusion Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5867-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5867-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7690-3

  • Online ISBN: 978-1-4615-5867-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics