Skip to main content

Metabolic Mechanisms of Anoxia Tolerance in the Turtle Brain

  • Chapter
Book cover Oxygen Transport to Tissue XVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

Abstract

Turtle brain survives anoxia by maintaining ATP levels necessary to avoid the loss of ion homeostasis and the uncontrolled release of excitotoxic neurotransmitters [1–6]. A central question toward defining anoxic tolerance in turtle brain is how do ATP production and ATP use remain matched despite complete inhibition of oxidative metabolism. Indirect evidence of both a Pasteur effect and a hypometabolic state have been proposed previously. For example, calculations based on creatine phosphate depletion and lactate accumulation during anoxia suggested that ATP production was markedly reduced (by approx 88%) [1, 2]. Also, enzymatic studies of turtle brain suggested the presence of an initial Pasteur effect followed by a decrease in the glycolytic rate[7]. Depression of electrical activity in the turtle brain further strengthened the proposal of the presence of a hypometabolic state [5, 8–10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chih, C.P., Z.C. Feng, M. Rosenthal, P.L. Lutz, and T.J. Sick, Energy metabolism, ion homeostasis, and evoked potentials in anoxic turtle brain. Am J Physiol, 257 (4 Pt 2): p. R854–R860. 1989.

    PubMed  CAS  Google Scholar 

  2. Lutz, P.L., P. McMahon, M. Rosenthal, and T.J. Sick, Relationships between aerobic and anaerobic energy production in turtle brain in situ. Am J Physiol, 247 (4 Pt 2): p. R740–R744. 1984.

    PubMed  CAS  Google Scholar 

  3. Lutz, P., G. Nilsson, and M. Perez-Pinzon, Anoxia tolerant animals, from a neurobiological perspective. Comp. Biochem. Physiol.,: p. In press. 1995.

    Google Scholar 

  4. Nilsson, G.E. and P.L. Lutz, Release of inhibitory neurotransmitters in response to anoxia in turtle brain. Am J Physiol, 261 (1 Pt 2): p. R32–R37. 1991.

    PubMed  CAS  Google Scholar 

  5. Perez-Pinzon, M.A., M. Rosenthal, P.L. Lutz, and T.J. Sick, Anoxic survival of the isolated cerebellum of the turtle Pseudemis scripta elegans. J Comp Physiol [b], 162(1): p. 68–73. 1992.

    Article  CAS  Google Scholar 

  6. Sick, T.J., M. Rosenthal, J.C. LaManna, and P.L. Lutz, Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats. Am J Physiol, 243(3): p. R281–R288. 1982.

    Google Scholar 

  7. Kelly, D.A. and K.B. Storey, Organ-specific control of glycolysis in anoxic turtles. Am J Physiol, 255 (5 Pt 2): p. R774–R779. 1988.

    PubMed  CAS  Google Scholar 

  8. Feng, Z.C., M. Rosenthal, and T.J. Sick, Suppression of evoked potentials with continued ion transport during anoxia in turtle brain. Am J Physiol, 255(3 Pt 2): p. R478–R484. 1988.

    PubMed  CAS  Google Scholar 

  9. Perez-Pinzon, M.A., M. Rosenthal, T.J. Sick, RL. Lutz, J. Pablo, and D. Mash, Downregulation of sodium channels during anoxia: a putative survival strategy of turtle brain. Am J Physiol, 262 (4 Pt 2): p. R712–R715. 1992.

    PubMed  CAS  Google Scholar 

  10. Perez-Pinzon, M.A., C.Y. Chan, M. Rosenthal, and T.J. Sick, Membrane and synaptic activity during anoxia in the isolated turtle cerebellum. Am J Physiol, 263 (5 Pt 2): p. R1057–R1063. 1992.

    PubMed  CAS  Google Scholar 

  11. Perez-Pinzon, M., J. Bedford, M. Rosenthal, P. Lutz, and T. Sick. Metabolic adaptations to anoxia in the isolated turtle cerebellum, in Soc. for Neuroscience. 1991.

    Google Scholar 

  12. Gnaiger, E., Heat dissipation and energetic efficiency in animal anoxibiosis: Economy contra power. J. Exp. Zooi, 228: p. 471–490.1983.

    Article  CAS  Google Scholar 

  13. Larrabee, M.G., Oxygen consumption of excised sympathetic ganglia at rest and in activity. J. Neurochem., 2(81–101). 1958.

    Google Scholar 

  14. Martin, F.R., J. Sanchez-Ramos, and M. Rosenthal, Selective and nonselective effects of l-methyl-4-phenylpyridinium on oxygen consumption in rat striatal and hippocampal slices. J Neurochem, 57(4): p. 1340–1346. 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Lowry, O.H. and J. Passonneau, A flexible system of enzyme analysis. 1972, New York: Academic Press.

    Google Scholar 

  16. Jackson, D.C., Metabolic depression and oxygen depletion in the diving turtle. J. Applied Physiol., 24: p. 503–509. 1968.

    CAS  Google Scholar 

  17. Lipton, P. and T. Wittingham, Energy metabolism and brain slice function, in Brain Slices, R. Dingledine, Editor. 1984, Plenum Press: New York and London, p. 113–153.

    Chapter  Google Scholar 

  18. Mcllwain, H. and H. Bachelard, Biochemistry and the Central Nervous System. 1971, Edinburgh: Churchill Livingston.

    Google Scholar 

  19. Robin, E.D., N. Lewiston, A. Newman, L. Simon, and J. Theodore, Bioenergetic pattern of turtle brain and resistance to profound loss of mitochondrial ATP generation. Proc. Natl. Acad. Sci., 76: p. 3922–3926. 1979.

    Article  PubMed  CAS  Google Scholar 

  20. Wu, T. and E. Davies, Regulation of glycolytic flux in energetically controlled free system. Arch. Biochem. Biophys., 209: p. 85–99. 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Duncan, J. A. and K.B. Storey, Subcellular enzyme binding and the regulation of glycolysis in anoxic turtle brain. Am J Physiol, 262 (3 Pt 2): p. R517–R523. 1992.

    PubMed  CAS  Google Scholar 

  22. Siesjo, B., Brain energy metabolism. 1978, New York: Wiley.

    Google Scholar 

  23. Brooks, S.R and K.B. Storey, Regulation of glycolytic enzymes during anoxia in the turtle Pseudemys scripta. Am J Physiol, 257 (2 Pt 2): p. R278–R283. 1989.

    PubMed  CAS  Google Scholar 

  24. Hochachka, P.W., Defense strategies against hypoxia and hypothermia. Science, 231(4735): p. 234–241. 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Lutz, P., M. Rosenthal, and T. Sick, Living without oxygen: Turtle brain as a model of anaerobic metabolism. Mol. Physiol, 8: p. 411–425. 1985.

    CAS  Google Scholar 

  26. Mills, E. and F. Jobsis, Mitochondrial respiratory chain carotid body and chemoreceptor response to changes in oxygen tension. J. Neurophysiol, 35: p. 405–428. 1972.

    PubMed  CAS  Google Scholar 

  27. Sick, T.J., E.R Chasnoff, and M. Rosenthal, Potassium ion homeostasis and mitochondrial redox status of turtle brain during and after ischemia. Am J Physiol, 248 (5 Pt 2): p. R531–R540. 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pérez-Pinzón, M.A., Lutz, P.L., Sick, T.J., Rosenthal, M. (1997). Metabolic Mechanisms of Anoxia Tolerance in the Turtle Brain. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics