Advertisement

Effect of Perfluorochemical Emulsion on Hemorheology and Shear Induced Blood Trauma

Possible Mechanisms and Future Applications
  • M. V. Kameneva
  • H. S. Borovetz
  • J. F. Antaki
  • P. Litwak
  • W. J. Federspiel
  • R. L. Kormos
  • B. P. Griffith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 411)

Abstract

Blood trauma has been recognized as one of the key problems associated with assisted circulation. Indeed, the main requirement for improved heart-assist devices is the reduction of blood cell damage. The extremely high shear forces and prolonged contact between blood and foreign surfaces can cause mechanical destruction of erythrocytes (hemolysis), activation of platelets, changes in mechanical properties of erythrocytes1 and thus reduction of oxygen delivery. Even low level of hemolysis, in turn, drastically increases RBC aggregation at low shear conditions2. Additionally, plasma free hemoglobin can have a toxic effect on the cardiovascular system, probably because of hemoglobin vasoactivity, mediated by its property to bind nitric oxide (NO), an endothelium-derived relaxing factor3. Alternatively, NO might be destroyed by O2 radicals formed in the presence of hemoglobin3.

Keywords

Blood Viscosity Centrifugal Pump Rotary Blood Pump Left Heart Bypass Centrifugal Blood Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schima H., Müller M.R., Papantonis D., Schlusche C., Huber L., Scmidt C., Trubel W., Thoma H., Losert U., and Wolner E. Minimization of hemolysis in centrifugal blood pumps: influence of different geometries. The International Journal of Artificial Organs 16, 7, 521–529, 1993.PubMedGoogle Scholar
  2. 2.
    Seiyama A., Suzuki Y., Tateshi N., and Maeda N. Viscous properties of partially hemolyzed erythrocyte suspension. Biorheology 28, 452, 1991Google Scholar
  3. 3.
    Winslow R.M., Vandergriff K.D., and Motterlini R. Mechanism of hemoglobin toxicity. Annals of Biomedical Engineering 21, Suppl.1, 16, 1993.Google Scholar
  4. 4.
    Kormos R.L., Borovetz H.S., Griffith B.P., and Hung T.-C. Rheologic Abnormalities in Patient with the Jarvik-7 Total Artificial Heart. Transaction of American Society for Artificial Internal Organs 10(3), 413–417, 1987Google Scholar
  5. 5.
    Hung T.-C., Butter D.B., Yie C.L., Sun Z., Borovetz H.S., Kormos R.L., Griffith B.P. and Hardesty R.L. Interim use of Jarvik-7 and Novacor artificial heart: blood rheology and transient ischemic attacks (TIA’s). Biorheology 28, 9–25, 1991.PubMedGoogle Scholar
  6. 6.
    Kamada T., McMillan D.E., Sternliev J.J., Bjork V.O., and Otsuji S. Erythrocyte crenation induced by free fatty acids in patients undergoing extracorporeal circulation. Lancet 2(8563), 818–821, 1987.PubMedCrossRefGoogle Scholar
  7. 7.
    Frattini P.L., Wachter C., Hung T.C., Kormos R.L., Griffith B.P., and Borovetz H.S. Erythrocyte defor-mability in patients on left ventricular assist systems. Transactions of the American Society for Artificial Internal Organs 35, 3, 733–735, 1989.CrossRefGoogle Scholar
  8. 8.
    Yarborough K.A., Mockros L.F., and Lewis F.J. Hydrodynamic hemolysis in extracorporeal machines. Journal of Thoracic and Cardiovascular Surgery 52, 4, 550–557, 1966.PubMedGoogle Scholar
  9. 9.
    Oku T., Harasaki H., Smith W., and Nosé, Y. Hemolysis. A comparative Study of Four Nonpulsatile Pumps. Transactions of the American Society for Artificial Internal Organs 34, 500–504, 1988.Google Scholar
  10. 10.
    Qian KUN-XI. Experience in reducing the hemolysis of an impeller assist heart. Transactions of the American Society for Artificial Internal Organs 35, 46–53, 1989.Google Scholar
  11. 11.
    Qian KUN-XI. Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump. Journal of Biomedical Engineering 12, 533–535, 1990.CrossRefGoogle Scholar
  12. 12.
    Wurrsinger L.J. and Opitz R. (1991). Hematological principles of hemolysis and thrombosis with special reference to rotary blood pumps. Proceeding of the International Workshop on Rotary Blood Pumps. Edited by H. Schima, H. Thoma, G. Weiselthaler, and E. Wolner, Vienna, ISBN 3-900928-00-2, pp. 19–25.Google Scholar
  13. 13.
    Schima H., Schlusche C., Jeremejev B.V., Schor I., Geihseder, Müller M.R., and Losert U. Influence of centrifugal blood pump on the elasticity of erythrocytes. Transactions of the American Society for Artificial Internal Organs 37, 658–661, 1991.Google Scholar
  14. 14.
    Sugiki M., Murakami A., Koton K., Takadou S., and Ueyama T. Effect of eicosapentaenoic acid on erythro-aggregometry in left heart bypass by centrifugal pump. Japanese Journal of Artificial Organs 21(2), 575–580, 1992.Google Scholar
  15. 15.
    Sugiki M., Murakami A., Koton K., Ueyama T., Takadou S., Watanabe G., and Misaki T. Effect of eicosapentaenoic acid on erythrocyte aggregation in left heart bypass by centrifugal pump. Artificial Organs 17(6), 561, 1993.Google Scholar
  16. 16.
    Geyer R.P. Perfluorochemicals as oxygen transport vehicles. Biomat., Art. Cell, Art. Org., 16, 31–49, 1988.Google Scholar
  17. 17.
    Lowe K.C. Synthetic Oxygen Transport Fluids Based on Perfluorochemicals: Applications in Medicine and Biology. Vox Sang 60, 129–140, 1991.PubMedCrossRefGoogle Scholar
  18. 18.
    Reeder G.D. The Biochemistry and Physiology of Hemoglobin. Reston, Virginia, American Society of Extra-Corporeal Technology, 1986, p. 4–15.Google Scholar
  19. 19.
    Kern M.J. The use of Fluosol during PTCA in patient at risk for ischemic complications. The Journal of Invasive Cardiology, 5 (Suppl. A), 1A, 1993Google Scholar
  20. 20.
    Naito K., Mizuguchi K., and Nosé, Y. The need for standardizing of hemolysis. Artificial Organs 18(1), 7–10, 1994.PubMedCrossRefGoogle Scholar
  21. 21.
    E.F. Bernstein, R.A. Indeglia, M.A. Shea, and R.I. Varco. Sublethal damage to the red cell from pumping. Circulation 35(4 Suppl): 1226–1233, 1967.Google Scholar
  22. 22.
    Lowe G.D.O., editor. Clinical Blood Rheology. CRC Press, Inc. Boca Raton, Florida, 1988.Google Scholar
  23. 23.
    Stuard J. and Nash G.B. Technological advances in blood rheology. Critical Reviews in Clinical Laboratory Sciences 28(1), 61–93, 1990.CrossRefGoogle Scholar
  24. 24.
    International Committee for Standardization in Haematology. Guidelines for measurement of blood viscosity and erythrocyte deformability. Clinical Hemorheology 6, 439–453, 1986.Google Scholar
  25. 25.
    Glanz S.A. Primer of Biostatistics. 2-d edition. McGraw-Hill Information Services Company, Health Professions Division, 1987.Google Scholar
  26. 26.
    Sutera S.P. Flow induced trauma to blood cells. Circulation Research 41(1), 2–8, 1977.PubMedCrossRefGoogle Scholar
  27. 27.
    Leverett L.B., Heliums J.D., Alfrey C.P., and Lynch E.C. Red blood cell damage by shear stress. Biophysical Journal 12, 3, 257–273, 1972.PubMedCrossRefGoogle Scholar
  28. 28.
    Greene H.L. and Madan S.R. The role of fluid viscoelastisity during in-vitro destruction of erythrocytes. Biorheology 12:377–382, 1975.PubMedGoogle Scholar
  29. 29.
    Somer T. and Meiselman H.J. Disorders of blood viscosity. Annals of Medicine 25, 31–39, 1993.PubMedCrossRefGoogle Scholar
  30. 30.
    Eckstein E.C., Tilles A.W., and Millero III F.J. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvascular Research 36:31–39, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. V. Kameneva
    • 1
  • H. S. Borovetz
    • 1
  • J. F. Antaki
    • 1
  • P. Litwak
    • 1
  • W. J. Federspiel
    • 1
  • R. L. Kormos
    • 1
  • B. P. Griffith
    • 1
  1. 1.Artificial Heart and Lung Center, Center for Biotechnology and BioengineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations