Skip to main content

Weak Spots Inside the Myocardium of a Langendorff Rat Heart Observed by Nadh Videofluorometry

  • Chapter
Oxygen Transport to Tissue XVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

Abstract

Myocardial function is highly dependent on an aerobic metabolism and can only be maintained when the oxygen delivery is more than the oxygen demand. Dysoxia occurs when the demand of oxygen by the heart exceeds that being supplied through the myocardial vasculature. Hypoperfusion of the myocardium causes a marked heterogeneity of well and less well perfused areas. These areas have been shown to be anatomically defined by the properties of the myocardial microvasculature (King et al. 1985, Franzen et al. 1988, Ince et al. 1993, Rakusan et al. 1994, Duling 1994). The properties of these dysoxic areas under different physiological conditions have been most studied by NADH fluorescence imaging techniques (Barlow et al. 1976, Steenbergen et al. 1977, Ince et al. 1993, Vetterlein et al. 1995). The NADH fluorescence technique was introduced by Chance and makes use of the fluorescence properties of mitochondrial NADH for the measurement of mitochondrial energy state of tissue cells in situ (Chance et al. 1976). NADH is situated at the high-energy side of the respiratory chain and during dysoxia accumulates in concentration because less NADH is oxidised to NAD+. Episodes of high cardiac oxygen consumption, as occurs during high work rates, causes reduction of NADH levels (Osbakken 1994, Ashruf et al. 1995). The optical properties of NADH and NAD+ clearly differ. Upon excitation with UV-light (365 nm) NADH, unlike NAD+, fluoresces at the 460 nm light (blue). Under borderline hypoxic conditions imaging the distribution of NADH in the heart surface shows a heterogeneous distribution of well, and less well perfused areas. The less well perfused areas we have termed as cardiac “weak spots” since they are first to become dysoxic when the heart becomes comprised such as occurs during severe tachycardia (Ince et al. 1993) or during severe vasoconstriction as occurs during nitric oxide synthesis inhibition in endotoxemic hearts (Avontuur et al. 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashruf, J.F., Coremans, J.M.C.C., Bruining, H.A. and Ince, C. 1995, Increase of cardiac work is associated with decrease of mitochondrial NADH, Am. J.Physiol., 269, H856–H862.

    PubMed  CAS  Google Scholar 

  • Avontuur, J.A.M., Bruining, H.A. and Ince, C. 1995, Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats, Circ. Res. 76, 418–425.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, C.H. and Chance, B., 1976, Ischemic areas in perfused rat hearts: measurements by NADH florescence photography, Science (Wash. DC) 193, 909–910.

    Article  CAS  Google Scholar 

  • Chance, B., 1976, Pyridine nucleotide as an indicator of oxygen requirements for energy-linked functions of mitochondria, Supp.1 Circ. Res. 38, 131–138.

    Article  Google Scholar 

  • Duling, B.R. 1994, Is red cell flow heterogeneity a critical variable in the regulation and limitation of oxygen transport to tissue? Adv. Exp. Med. Biol. 361, 237–247.

    Article  PubMed  CAS  Google Scholar 

  • Franzen, D., Conway, R.S., Zhang, H., Sonnenblick, E.H. and Eng, C. 1988, Spatial heterogeneity of local blood flow and metabolite content in dog hearts, Am. J. Physiol. 254, H344–H353.

    PubMed  CAS  Google Scholar 

  • Hulsmann, W.C., Ashruf, J.F., Bruining, H.A. and Ince, C., 1993, Imminent ischemia in normal and hypertrophic Langendorff rat hearts; effects of fatty acids and superoxyde dismutase monitored by NADH surface fluorescence, Biochim. Biophys. Acta 1181, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Ince, C., Avontuur, J.A.M., Wieringa, P.A., Spaan, J.A.E. and Bruining, H.A., 1993, Heterogeneity of the hypoxic state in the rat heart is determined at capillary level, Am. J. Physiol. 264, H294–H301.

    PubMed  CAS  Google Scholar 

  • King, R.B., Bassingwaighte, J.B., Hales, J.R.S. and Rowell, L.B., 1985, Stability of myocardial blood flow in normal awake baboons, Circ. Res. 57, 285–295.

    Article  PubMed  CAS  Google Scholar 

  • Osbakken, M.D., 1994, 1–2 Metabolic regulation of in vivo myocardial contractile function: multiparameter analysis, Mol. and Cell. Bioch. 133/134, 13–37.

    Article  Google Scholar 

  • Rakusan, K., Batra, S. and Heron, M.I., 1994, A new approach for quantitative evaluation of coronary capillaries in longitudinal sections, Adv. Exp. Med. Biol. 361, 407–415.

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen, C., Deleeuw, G., Barlow, C., Chance, B. and Williamson, J.R., 1977, Heterogeneity of the hypoxic state in perfused rat heart, Circ. Res. 41, 606–615.

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen, C., Deleeuw, G., Rich, T. and Williamson, J.R., 1977, Effects of acidosis and ischemia on myocardial contractility and intracellular pH, Circ. Res. 41, 849–858.

    Article  PubMed  CAS  Google Scholar 

  • Vetterlein, F. Prange, M., Lubrich, D., Penida, J. Neckel, M. and Schmidt, G., 1995, Capillary perfusion pattern and microvascular geometry in heterogeneous hypoxic areas of hypofused rat myocardium, Am. J. Physiol. 268, H2183–H2194.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eerbeek, O., Ince, C. (1997). Weak Spots Inside the Myocardium of a Langendorff Rat Heart Observed by Nadh Videofluorometry. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics