Skip to main content

Regional Differences in Metabolism and Intracellular pH in Response to Moderate Hypoxia

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

Abstract

It is well known that hypoxia induces increased respiration through activation of peripheral chemoreceptor reflex pathways. But, in the absence of afferent inputs from peripheral chemoreceptors, systemic hypoxia causes depression of breathing activity. Evidence of hypoxic depression of respiration also can be observed in animals and in humans with intact peripheral chemoreceptors.The effects of central hypoxia on respiratory activity require more time to develop than the effects of hypoxic stimulation through peripheral chemoreceptors, suggesting the involvement of relatively slow metabolic processes. The mechanism by which hypoxia causes central depression of breathing is not known, but several possibilites can be suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neubauer JA, JE Melton, and NH Edelman: Modulation of respiration during brain hypoxia. J Appl Physiol 68:441–451 (1990).

    PubMed  CAS  Google Scholar 

  2. LaManna JC, JK Griffith, BR Cordisco, C-W Lin, and WD Lust: Intracellular pH in rat brain in vivo and in brain slices. Can J Physiol Pharmacol 70:S269–S277 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. Tombaugh GC and RM Sapolsky: Mild acidosis protects hippocampal neurons from injury induced by oxygen and glucose deprivation. Brain Res 506:343–345 (1990).

    Article  CAS  Google Scholar 

  4. Giffard RG, H Monyer, CW Christine, and DW Choi: Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 506:339–342(1990).

    Article  PubMed  CAS  Google Scholar 

  5. Monaghan DT and CW Cotman: Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J Neurosci 5:2909–2919 (1985).

    PubMed  CAS  Google Scholar 

  6. Bianchi AL, M Denavit-Saubié, and J Champagnat: Central control of breathing in mammals: Neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev 75:1–45 (1995).

    PubMed  CAS  Google Scholar 

  7. Jiang C, FJ Sigworth, and GG Haddad: Oxygen deprivation activates an ATP-inhibitable K+ channel in substantia nigra neurons. J Neurosci 14:5590–5602 (1994).

    Google Scholar 

  8. Jiang C and GG Haddad: A direct mechanism for sensing low oxygen levels by central neurons. Proc Natl Acad Sci USA 91:7198–7201 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. Davies NW, NB Standen, and PR Stanfield: The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscles. J Physiol (Lond) 445:549–568 (1992).

    CAS  Google Scholar 

  10. Petroff OAC, JW Prichard, KL Behar, JR Alger, JA den Hollander, and RG Shulman: Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurol 35:781–788 (1985).

    Article  CAS  Google Scholar 

  11. Chesler M and RP Kraig: Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am J Physiol 253: R666–R670 (1987).

    PubMed  CAS  Google Scholar 

  12. LaManna JC and KA McCracken: The use of neutral red as an intracellular pH indicator in rat brain cortex in vivo. Anal Biochem 142:117–125 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. Csiba L, W Paschen, and K-A Hossmann: A topographic quantitative method for measuring brain tissue pH under physiological and pathological conditions. Brain Res 289:334–337 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. Anderson RE, FB Meyer, and FH Tomlinson: Focal cortical distribution of blood flow and brain pHi determined by in vivo fluorescent imaging. Am J Physiol 263:H565–H575 (1992).

    PubMed  CAS  Google Scholar 

  15. LaManna JC: Intracellular pH determination by absorption spectrophotometry of neutral red. Met Br Dis 2:167–182(1987).

    Article  CAS  Google Scholar 

  16. Griffith JK, BR Cordisco, C-W Lin, and JC LaManna: Distribution of intracellular pH in the rat brain cortex after global ischemia as measured by color film histophotometry of neutral red. Brain Res 573:1–7 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. LaManna JC, JK Griffith, BR Cordisco, HE Bell, C-W Lin, S Pundik, and WD Lust: Rapid recovery of rat brain intracellular pH after cardiac arrest and resuscitation. Brain Res 687:175–181 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. Sick TJ, TS Whittingham, and JC LaManna: Determination of intracellular pH in the in vitro hippocampal slice preparation by transillumination spectrophotometry of neutral red. J Neurosci Meth 27:25–34 (1989).

    Article  CAS  Google Scholar 

  19. Haxhiu MA, J Mitra, E van Lunteren, EN Bruce, and NS Cherniack: Hypoglossal and phrenic responses to cholinergic agents applied to ventral medullary surface. Am J Physiol 247:R939–R944 (1984).

    PubMed  CAS  Google Scholar 

  20. Pontén U, RA Ratcheson, LG Salford, and BK Siesjö: Optimal freezing conditions for cerebral metabolites in rats. J Neurochem 21:1127–1138 (1973).

    Article  PubMed  Google Scholar 

  21. Lowry OH and JV Passonneau: A Flexible System of Enzymatic Analysis. Academic Press. New York, (1972).

    Google Scholar 

  22. Lust WD, GK Feussner, EK Barbehenn, and JV Passonneau: The enzymatic measurement of adenine nucleotides and P-creatine in picomole amounts. Anal Biochem 110:258–266 (1981).

    Article  PubMed  CAS  Google Scholar 

  23. Xu F, M Sato, MJJ Spellman, RA Mitchell, and JW Severinghaus: Topography of cat medullary ventral surface hypoxic acidification. J Appl Physiol 73:2631–2637 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

LaManna, J.C., Haxhiu, M.A., Kutina-Nelson, K.L., Pundik, S., Erokwu, B., Cherniack, N.S. (1997). Regional Differences in Metabolism and Intracellular pH in Response to Moderate Hypoxia. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics