Skip to main content

Mathematical Modelling of Local Regulation of Blood Flow by Veno-Arterial Diffusion of Vasoactive Metabolites

  • Chapter
Oxygen Transport to Tissue XVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

  • 262 Accesses

Abstract

It is widely accepted that vasoactive substances which are consumed or produced by tissue metabolism play a role in the adjustment of local perfusion rate to the metabolic needs of the tissue. In order to evoke a response of the vascular system, these substances — in the following for simplicity denoted by “vasodilators” even though oxygen, for example, is a vasoconstrictor — need to get into close contact with the small arterioles which represent the most powerful effectors in perfusion control. On the other hand, tissue sites in which supply with nutrients is most critical (“lethal corners”) and in which a vasodilator signal may be generated earliest, are located hundreds of µm away from the arteriolar supply. In an attempt to explain how this gap in the signal chain may be bridged, it has been suggested that vasodilators released by the tissue cells are taken up by the blood stream and transported with the blood to the venules and from there by diffusion to the accompanying arterioles which are reactive to changes in vasodilator concentration [9, 16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.G. Caro, T.Y. Pedley, R.C. Schroter, W.A. Seed, The mechanics of the circulation, Oxford, Pergamon Press, 1978.

    Google Scholar 

  2. E. Eriksson, M. Myrhage, Microvascular dimensions and blood flow in skeletal muscle, Acta Physiol.Scand. 86:211–222 (1972)

    Article  PubMed  CAS  Google Scholar 

  3. K. Fronek, B.W. Zweifach, Microvascular pressure distribution in skeletal muscle and the effect of vasodilation, Am.J.Physiol. 228:791–796 (1975)

    PubMed  CAS  Google Scholar 

  4. Y.-C. Fung, Biodynamics (Circulation), Springer-Verlag, New York, 1984.

    Google Scholar 

  5. K. Groebe, Effects of red cell spacing and red cell movement upon oxygen release under conditions of maximally working skeletal muscle, Adv.Exp.Med.Biol. 248:175–185 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. K. Groebe, A versatile model of steady state O 2 supply to tissue: Application to skeletal muscle, Biophys.J. 57:485–498 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. K. Groebe, O 2 transport in skeletal muscle: Development of concepts and current state, Adv.Exp.Med.Biol. 345:15–22 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. K. Groebe, An easy-to-use model for oxygen supply to red muscle, Biophys.J. 68:1246–1269 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. R.L. Hester, Venular-arteriolar diffusion of adenosine in hamster cremaster microcirculation, Am. J. Physiol. 258:H1918–H1924 (1990).

    PubMed  CAS  Google Scholar 

  10. C.R. Honig, T.E.J. Gayeski, W. Federspiel, A. Clark, P. Clark, Muscle O 2 gradients from hemoglobin to cytochrome: new concepts, new complexities, Adv.Exp.Med.Biol. 169:23–38 (1984)

    Article  PubMed  CAS  Google Scholar 

  11. C.R. Honig, T.E.J. Gayeski, A. Clark, P.A.A. Clark, Arteriovenous oxygen diffusion shunt is negligible in resting and working gracilis muscles, Am.J.Physiol. 261:H2031–H2043 (1991).

    PubMed  CAS  Google Scholar 

  12. Yu.Ya. Kislyakov, A.V. Kopyltsov, Erythrocyte in the capillary-the mathematical model, in: Biomechani-cal transport processes, F. Mosora et al. (eds.), pp. 217–222, Plenum Press, New York, 1990.

    Google Scholar 

  13. Yu.Ya. Kislyakov, A.V. Kopyltsov, Mathematical model of the movement of a non-symmetric erythrocyte along a capillary, Biophysics 3:484–489 (1990).

    Google Scholar 

  14. A.V. Kopyltsov, Effect of the viscosity of the plasma on the resistance to motion of erythrocytes along the capillaries, Biophysics 6:1131–1136 (1989).

    Google Scholar 

  15. A.S. Popel, Theory of oxygen transport to tissue, Critical Rev.Biomed.Eng. 17:257–321 (1989).

    CAS  Google Scholar 

  16. Y. Saito, A. Eraslan, R.L. Hester, Importance of venular flow in control of arteriolar diameter in hamster cremaster muscle, Am. J.Physiol. 265:H1294–H1300 (1993).

    PubMed  CAS  Google Scholar 

  17. G.W. Schmid-Schoenbein, R. Skalak, S. Usami, S. Chien, Cell distribution in capillary networks, Mi-crovasc.Res. 19:18–44 (1980).

    Article  Google Scholar 

  18. G. Thews, Oxygen supply to the dynamically working skeletal muskle, in: Funktionsanalyse biologischer Systeme, Bd. 16, M. Meyer, N. Heisler (eds.), pp. 63–75, Akademie der Wissenschaften und der Literatur, G.Fischer, Stuttgart, 1986.

    Google Scholar 

  19. B.J. Zweifach, H.H. Lipowsky, Pressure-flow relations in blood and lymph microcirculation, in: Handbook of Physiology, Sect. 2: The Cardiovascular System, Vol. IV: Microcirculation, E.M. Renkin, C.C. Michel, (eds.), pp. 251–307, American Physiological Society, Bethesda, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kopyltsov, A.V., Groebe, K. (1997). Mathematical Modelling of Local Regulation of Blood Flow by Veno-Arterial Diffusion of Vasoactive Metabolites. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics