Advertisement

Endothelial and Sympathetic Regulation of Vascular Tone in Canine Skeletal Muscle

  • C. E. King-VanVlack
  • S. E. Curtis
  • J. D. Mewburn
  • S. M. Cain
  • C. K. Chapler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 411)

Abstract

In vitro studies have shown that production of the vasoconstrictor endothelin-1 (ET) is inhibited by NO in porcine aorta (Boulanger & Lüscher, 1990) while in vivo studies have shown that the increase in total peripheral resistance following nitric oxide synthase (NOS) inhibition in anesthetized rats is blunted by blockade of endothelin receptors (Nafrialdi et al., 1994; Richard et al., 1995). In order to assess the role of endothelin in the regulation of resting vascular tone in skeletal muscle, it was first necessary to establish that we could effectively inhibit the vasoconstrictor actions of endothelin in our experimental preparation. Endothelin-1 binds to both ETA receptors on vascular smooth muscle producing vasoconstriction (Barnes, 1994) and to ETB receptors on endothelial cells to induce transient vasodilation through stimulation of NO production (Fujitani et al., 1993; Sakurai et al., 1992). The contribution of ETB receptors in the vasoconstrictor response to ET is minimal, but some studies have demonstrated that the ETA receptor antagonists BQ123 and FR139317 were unable to fully prevent or reverse the vasoconstrictor effect of endothelin in (Bird & Waldron, 1993; McMurdo et al., 1993). Because the dilatory action of ET is transient, we elected to focus on the vasoconstrictor action of ET.

Keywords

Total Peripheral Resistance Muscle Blood Flow Oxygen Extraction Ratio Porcine Aorta Arginine Methyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, P.J. Endothelins and pulmonary disease. J. Appl. Physiol. 77:1051–1059, 1994.PubMedGoogle Scholar
  2. Bird, J.E. and T.L. Waldron. Incomplete inhibition of endothelin-1 pressor effects by an endothelin ETA receptor anatagonist. Eur. J. Pharmacol. 240:295–298, 1993.PubMedCrossRefGoogle Scholar
  3. Boulanger, C. and T.F. Lüscher. Release of endothelin from the porcine aorta: inhibition by endothelium-derived nitric oxide. J. Clin. Invest. 85:587–590, 1990.PubMedCrossRefGoogle Scholar
  4. Clozel, M. and J.-P. Clozel. Effects of endothelin on regional blood flows in squirrel monkeys. J. Pharmacol. Expt. Ther. 250:1125–1131, 1989.Google Scholar
  5. Donicker, J.E., C. Hanet, A. Berbinschi, L. Galanti, A. Robert, H. VanMechelen, H. Pouleur and J-M. Ketelslegers. Cardiovascular and endocrine effects of endothelin-1 at pathophysiological and pharmacological plasma concentrations in conscious dogs. Circ. 84:2476–2484, 1991.CrossRefGoogle Scholar
  6. Fujitani, Y., H. Ueda, T. Okada, Y. Urade and H. Karaki. A selective agonist of endothelin Type B receptor, IRL 1620, stimulates cyclic GMP increase via nitric oxide formation in rat aorta. J. Pharmacol. Expt. Ther. 267:683–689, 1993.Google Scholar
  7. Given, M.B., R.F. Lowe, H. Lippton, A.L. Hyman, G.E. Sander and T.D. Giles. Hemodynamic actions of endothelin in conscious and anesthetized dogs. Peptides 10:41–44, 1989.PubMedCrossRefGoogle Scholar
  8. Ihara, M., K. Noguchi, T. Saeki, T. Fukuroda, S. Tsuchida, S. Kimura, T. Fukami, K. Ishikawa, M. Nishikibe and M. Yano. Biological profiles of highly potent novel endothelin antagonists selective for the ETA receptor. Life Sci. 50:247–255, 1992.PubMedCrossRefGoogle Scholar
  9. Kubes, P., M. Melinyshyn, K. Nesbitt, S.M. Cain and C.K. Chapter. Participation of α2-adrenergic receptors in neural vascular tone of canine skeletal muscle. Am. J. Physiol. 262:H1705–H1710, 1992.PubMedGoogle Scholar
  10. Lerman, K., E.K. Sandok, F.L. Hildebrand and J.C. Burnett. Inhibition of endothelium-derived relaxing factor enhances endothelin-mediated vasoconstriction. Circ. 85:1894–1898, 1992.CrossRefGoogle Scholar
  11. McMurdo, L., R. Corder, C. Thiemermann and J.R. Vane. Incomplete inhibition of the pressor effect of endothelin-1 and related peptides in the anaesthetized rat with BQ-123 provides evidence for more than one vasoconstrictor substance. Br. J. Pharmacol. 108:557–561, 1993.PubMedCrossRefGoogle Scholar
  12. Nafrialdi, N., B. Jover and A. Mimran. Endogenous vasoactive systems and the pressor effect of acute Nω-nitro-L-arginine methyl ester administration. J. Cardiovasc. Pharmacol. 23:765–771, 1994.PubMedCrossRefGoogle Scholar
  13. Richard, V., M. Hogie, M. Clozel, B. Löffler and C. Thuillez. In vivo evidence of an endothelin-induced vasopressor tone after inhibition of nitric oxide synthesis in rats. Circ. 91:771–775, 1995.CrossRefGoogle Scholar
  14. Rogerson, M.E., H.S. Cairns, L.D. Fairbanks, J. Westwick and G.H. Neild. Endothelin-1 in the rabbit: interactions with cyclo-oxygenase and NO-synthase products. Br. J. Pharmacol. 108:838–843, 1993.PubMedCrossRefGoogle Scholar
  15. Sakurai, T., M. Yanagisawa and T. Masaki. Molecular characterization of endothelin receptors. Trends Pharmacol. Sci. 13:103–108, 1992.PubMedCrossRefGoogle Scholar
  16. Warner, T.D., G.H. Allcock and J.R. Vane. Reversal of established responses to endothelin-1 in vivo and in vitro by the endothelin receptor antagonist, BQ-123 and PD-145065. Br. J. Pharmacol. 112:207–213, 1994.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • C. E. King-VanVlack
    • 1
    • 2
  • S. E. Curtis
    • 3
    • 4
  • J. D. Mewburn
    • 2
  • S. M. Cain
    • 4
  • C. K. Chapler
    • 2
  1. 1.School of Rehabilitation TherapyQueen’s UniversityKingstonCanada
  2. 2.Department of PhysiologyQueen’s UniversityKingstonCanada
  3. 3.Departments of PediatricsUniversity of Alabama at BirminghamUSA
  4. 4.Physiology and BiophysicsUniversity of Alabama at BirminghamUSA

Personalised recommendations