Skip to main content

Vascularization, Blood Flow, Oxygenation, Tissue pH, and Bioenergetic Status of Human Breast Cancer

  • Chapter
Oxygen Transport to Tissue XVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

Abstract

Many solid tumors are relatively resistant to conventional irradiation, chemotherapy and other non-surgical treatment modalities. A variety of factors are involved in the lack of responsiveness of these neoplasms, including (a) an intrinsic, genetically determined resistance and (b) physiological properties primarily created by inadequate and non-uniform vascular networks. Physiological factors which are usually closely linked encompass microcirculatory parameters (including transvascular and interstitial transport), tissue oxygen and nutrient supply, tumor pH and bioenergetic status. Despite the important role of physiological properties for tumor growth and metastasis, for early tumor response to treatment, for tumor detection, and probably for prediction of long-term outcome, reliable data on human solid tumors are scarce although the number of clinical investigations dealing with this subject is rapidly increasing.

This paper is dedicated to Professor Dr. Dr. Gerhard Thews on the occasion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Vaupel. Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors. Ernst Schering Research Foundation, Lecture 23, Berlin (1994).

    Google Scholar 

  2. H.J.J.A. Bernsen, P.F.J.W. Rijken, T. Oostendorp & A.J. van der Kogel. Vascularity and perfusion of human gliomas xenografted in the athymic nude mouse. Brit. J. Cancer 71, 721–726 (1995)

    Article  PubMed  CAS  Google Scholar 

  3. N. Weidner, J. Folkman, F. Pozza, P. Bevilacqua, E.N. Allred, D.H. Moore, S. Meli & G. Gasparini. Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl. Cancer Inst. 84, 1875–1887 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. N. Weidner, J.P. Semple, W.R. Welch & J. Folkman. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. New Engl. J. Med. 324, 1–8 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. E.R. Horak, R. Leek, N. Klenk, S. Lejeune, K. Smith, N. Stuart, M. Greenall, K. Stepniewska & A.L. Harris. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340, 1120–1124 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. S. Bosari, A.K.C. Lee, R.A. DeLellis, G. Heatley, B. Wiley & M.L. Silverman. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum. Pathol. 23, 755–761 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. M. Toi, J. Kashitani & T. Tominaga. Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int. J. Cancer 55, 371–374 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. A. Obermair, K. Czerwenka, C. Kurz, P. Buxbaum, M. Schemper & P. Sevelda. Influence of tumoral microvessel density on the recurrence-free survival in human breast cancer: Primary results. Onkologie 17, 44–49 (1994).

    Article  Google Scholar 

  9. A. Obermair, K. Czerwenka, C. Kurz, A. Kaider & P. Sevelda. Tumorale Gefäßdichte bei Mammatumoren und ihr Einfluß auf das rezidivfreie Überleben. Chirurg 65, 611–615 (1994).

    PubMed  CAS  Google Scholar 

  10. Y. Ogawa, Y.-S. Chung, B. Nakata, S. Takatsuka, K. Maeda, T. Sawada, Y. Kato, K. Yoshikawa, M. Sakurai & M. Sowa. Microvessel quantitation in invasive breast cancer by staining for factor VIII-related antigen. Brit. J. Cancer 71, 1297–1301 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. E. Protopapa, G.S. Delides & L. Révész. Vascular density and the response of breast carcinomas to mastectomy and adjuvant chemotherapy. Eur. J. Cancer 29A, 1391–1393 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. M.E.H.M. van Hoef, W.F. Knox, S.S. Dhesi, A. Howell & A.M. Schor. Assessment of tumour vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur. J. Cancer 29A, 1141–1145 (1993).

    PubMed  Google Scholar 

  13. J.M. Wang, S. Kumar, D. Pye, N. Haboubi & L. Al-Nakib. Breast carcinoma: Comparative study of tumor vasculature using two endothelial cell markers. J. Natl. Cancer Inst. 86, 386–388 (1994)

    Article  PubMed  CAS  Google Scholar 

  14. B. Endrich & P. Vaupel. Tumorale Gefäßdichte bei Mammatumoren und ihr Einfluß auf das rezidivfreie Überleben. Chirurg 66, 76–77 (1995).

    PubMed  CAS  Google Scholar 

  15. R.P. Beaney. Positron emission tomography in the study of human tumors. Semin. Nucl. Med. 14, 324–341 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. R.P. Beaney, A.A. Lammertsma, T. Jones, C.G. McKenzie & K.E. Hainan. Positron emission tomography for in-vivo measurements of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma. Lancet 1, 131–134 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. R. Johnson. A thermodynamic method for investigation of radiation induced changes in the microcirculation of human tumors. Int. J. Radiat. Oncol. Biol. Phys. 1, 659–670 (1976).

    Article  PubMed  CAS  Google Scholar 

  18. C.B.J.H. Wilson, A.A. Lammertsma, C.G. McKenzie, K. Sikora & T. Jones. Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: A rapid and noninvasive dynamic method. Cancer Res. 52, 1592–1597 (1992).

    PubMed  CAS  Google Scholar 

  19. P. Vaupel, F. Kallinowski & P. Okunieff. Blood flow, oxygen and nutrient supply, and metabolic microenvi-ronment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    PubMed  CAS  Google Scholar 

  20. R.K. Jain. Barriers to drug delivery in solid tumors. Sci. American 271, 58–65 (1994).

    Article  CAS  Google Scholar 

  21. P. Vaupel. Blood flow and metabolic microenvironment of brain tumors. J. Neuro-Oncol. 22, 261–267 (1994).

    Article  CAS  Google Scholar 

  22. P. Vaupel, K. Schlenger, C. Knoop & M. Höckel. Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized pO2 tension measurements. Cancer Res. 51, 3316–3322 (1991).

    PubMed  CAS  Google Scholar 

  23. P. Vaupel. Oxygenation of human tumors. Strahlenther. Onkol. 166, 377–386 (1990).

    PubMed  CAS  Google Scholar 

  24. P. Vaupel, K. Schlenger & M. Höckel. Blood flow and tissue oxygenation of human tumors: an update. Adv. Exp. Med. Biol. 317, 139–151 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. S.J. Falk, R. Ward & N.M. Bleehen. The influence of carbogen breathing on tumour tissue oxygenation in man evaluated by computerised pO2 histography. Br. J. Cancer 66, 919–924 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. P.W. Vaupel. Oxygenation of solid tumors. In: Drug Resistance in Oncology. Ed. Teicher, B.A. Marcel Dekker, New York, pp. 53–85 (1993).

    Google Scholar 

  27. S. Runkel, A. Wischnik, J. Teubner, E. Kaven, J. Gaa & F. Melchert. Oxygenation of mammary tumors as evaluated by ultrasound-guided computerized-pO2-histography. Adv. Exp. Med. Biol. 345, 451–458 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. P.W. Vaupel, D.K. Kelleher & M. Günderoth (eds.). Tumor Oxygenation, Stuttgart, Jena, New York: Fischer (1995).

    Google Scholar 

  29. J. Füller, H.J. Feldmann, M. Molls & H. Sack. Untersuchungen zum Sauerstoffpartialdruck im Tumorgewebe unter Radio-und Thermoradiotherapie. Strahlenther. Onkol. 170, 453–460 (1994).

    PubMed  Google Scholar 

  30. E.M. Grischke, M. Kaufmann, M. Eberlein-Gonska, T. Mattfeldt, Ch. Sohn & G. Bastert. Angiogenesis as a diagnostic factor in primary breast cancer: Microvessel quantitation by stereological methods and correlation with color Doppler sonography. Onkologie 17, 35–42 (1994).

    Article  Google Scholar 

  31. P. Vaupel. Oxygen transport in tumors: Characteristics and clinical implications. Adv. Exp. Med. Biol. in press (1995)

    Google Scholar 

  32. P. Vaupel, C. Schaefer & P. Okunieff. Intracellular acidosis in murine fibrosarcomas coincides with ATP depletion, hypoxia, and high levels of lactate and total Pi. NMR Biomed. 7, 128–136 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. J.R. Griffiths. Are cancer cells acidic? Br. J. Cancer 64, 425–427 (1991).

    Article  PubMed  CAS  Google Scholar 

  34. P. Vaupel. Physiological properties of malignant tumours. NMR Biomed. 5, 220–225 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. H.S. Garewal, F.R. Ahmann, R.B. Schifman & A. Celniker. ATP assay: Ability to distinguish cytostatic from cytocidal anticancer drug effects. J. Natl. Cancer Inst. 77, 1039–1045 (1986).

    PubMed  CAS  Google Scholar 

  36. S.K. Calderwood, E.A. Bump, M.A. Stevenson, I. van Kersen & G.M. Hahn. Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cells stressed with starvation and heat. J. Cell. Physiol. 124, 261–268 (1985).

    Article  PubMed  CAS  Google Scholar 

  37. J.R. Griffiths, E. Cady, R.H.T. Edwards, V.R. McCready, D.R. Wilkie & E. Wiltshaw. 31P-NMR studies of a human tumour in situ. Lancet 1, 1435–1436 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. T.C. Ng, S. Vijayakumar, A.W. Majors, F.J. Thomas, T.F. Meaney & N.J. Baldwin. Response of a non-Hodgkin lymphoma to 60Co therapy monitored by 31P MRS in situ. Int J. Radiat. Oncol. Biol. Phys. 13, 1545–1551 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. W. Negendak, M. Crowley, N. Keller, M. Nussdorfer & J.L. Evelhoch. In vivo 31P MRS of normal human breasts: Age dependence and comparison with breast cancers. Proc. 7th Ann. Meeting Soc. Magn. Res. Med., San Francisco, CA, Vol. 1, 336 (1988).

    Google Scholar 

  40. R.D. Oberhaensli, D. Hilton-Jones, P.J. Bore, L.J. Hands, R.P. Rampling & G.K. Radda. Biochemical investigation of human tumours in vivo with phosphorus-31 magnetic resonance spectroscopy. Lancet 1, 8–11 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vaupel, P. (1997). Vascularization, Blood Flow, Oxygenation, Tissue pH, and Bioenergetic Status of Human Breast Cancer. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics