Skip to main content

Evaluation of the Concept of “Hypoxic Fraction” as a Descriptor of Tumor Oxygenation Status

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

Abstract

The presence and significance of tumor hypoxia has been recognized since the 1950’s. Hypoxic cells in vitro and in animal tumors in vivo are documented to be three times more resistant to radiation-induced killing compared to aerobic cells. There is now evidence that tumor hypoxia is treatment-limiting in many human cancers. One common way to describe the extent of hypoxia in individual and groups of tumors is the “hypoxic fraction.” This measurement infers that cells are present in only two radiobiologically significant states: oxygenated and hypoxic. In this paper, we demonstrate the qualitative and quantitative presence of hypoxic tumor cells using the oxygen dependent metabolism of the 2-nitroimidazole, EF5. Two assumptions concerning the calculation and interpretation of the hypoxic fraction are considered. The first is the use of multiple animals to describe the radiation response at a given radiation dose. We hypothesize that the presence of intertumor variability in radiation response due to hypoxia could negatively influenced the characterization of the change in slope required to calculate the hypoxic fraction. The studies presented herein demonstrate heterogeneity of radioresponse due to hypoxic fraction within and between tumor lines. The 9L subcutaneous tumor studied in air-breathing rats demonstrates a 2 log variation in surviving fraction at 17 Gy. The Morris 7777 hepatoma, in contrast, showed little variability of radiation response. Our second question addresses the limitations of using the “hypoxic fraction” to describe the radiation response of a tumor. This calculated value infers that radiobiological hypoxia is a binary measurement: that a tumor contains two cell populations, aerobic cells with maximal radiosensitivity and hypoxic cells with maximal radioresistance. The classic work of Thomlinson and Gray, however, implies the presence of an oxygen gradient from tumors vessel through the tissues. In both the 9L and Q7 tumors, flow cytometric analysis of EF5 binding demonstrates a continuous range of cellular pO2 levels. These studies suggest that: 1) there is extensive intertumor variability of radiation response in certain tumor lines; 2) the variability in radiation response between individual tumors in a group may affect the ability to describe a particular tumor type’s “hypoxic fraction” and 3) The oxygen status of tumor cells is a continuum. This realization affects the ability to apply a binary concept such as the “hypoxic fraction” effectively in radiobiology.

Work supported by grants CA-56679 (SME, CJK) and CA-62331 (SME) from National Institutes of Health, and the Department of Radiation Oncology, University of Pennsylvania.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hockel, M., Knoop, C., Schlenger, K., Vordran, B., Baussmann, E., Mitze, M., Knapstein, P. G., and Vaupel, P. Intratumor pO2 predicts survival in advanced cancer of the uterine cervix. Radiotherapy and Oncology, 26:45–50, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Gatenby, R. A., Kessler, H. B., Rosenblum, J. S., Coia, L. R., Moldofsky, P. J., Hartz, W. H., and Broder, G. J. Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of therapy. Int. J. Radiat. Oncol. Biol. Phys., 14:831–838, 1988.

    Article  PubMed  CAS  Google Scholar 

  3. Kallinowski, F., and Buhr, H. J. Can the oxygenation status of rectal carcinomas be improved by hyperoxia? pp. 291–296, 1995. In: Tumor Oxygenation. Eds. Vaupel, Kelleher, Gunderoth. Gustav Fischer Verlag, Stuttgart, 1995.

    Google Scholar 

  4. Moulder, J. E., and Rockwell, S. C. Hypoxic fractions of solid tumors: experimental techniques, methods of analysis and a survey of existing data. Int. J. Radiat. Oncol. Biol. Phys., 10:695–712, 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Horsman, M. R., Khalil, A. A., Nordsmark, M., Siemann, D. W., Hill S. A., Lynch, E. M., Chaplin, D. J., Stern, S., Thamas, C. D., Guichard, M., Grau, C., and Overgaard, J. The use of oxygen electrodes to predict radiobiological hypoxia in tumors. pp. 49–58, In: Tumor Oxygenation. Eds. Vaupel, Kelleher, Gunderoth. Gustav Fischer Verlag, Stuttgart, 1995.

    Google Scholar 

  6. Rockwell, S., Moulder, J. E., and Douglas, F. M. Tumor-to-tumor variability in the hypoxic fractions of experimental rodent tumors. Radiotherapy and Oncology, 2:57–64, 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Evans, S. M., Joiner, B. J., Jenkins, W. T., Laughlin, K. M., Lord, E. M., and Koch, C. J. Identification of hypoxia in cells and tissues of epigastric 9L rat tumours using EF5. Br. J. Cancer, 72: 875–882, 1995.

    Article  PubMed  CAS  Google Scholar 

  8. Thomlinson, R. H., and Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer, 9:539–579, 1955.

    Article  PubMed  CAS  Google Scholar 

  9. Woods, M. R., Lord, E. M., and Koch, C. J. Prediction of hypoxic radioresistance by monoclonal antibody reactive with 2-nitroimidazole adducts. Int. J. Radiat. Oncol. Biol. Phys., 34: 93–101, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. Leith, J. T., Schilling, W. A., and Wheeler, K. T. Cellular radiosensitivity of a rat brain tumor. Cancer, 35:1545–1550, 1975.

    Article  PubMed  CAS  Google Scholar 

  11. Wallen, C. A., Michaelson, S. M., and Wheeler, K. T. Evidence for an unconventional radiosensitivity of rat 9L subcutaneous tumors. Radiat. Res., 85:529–541, 1980.

    Article  Google Scholar 

  12. Howell, R. L., and Koch, C. J. The disaggregation, separation and identification of cells from irradiated and unirradiated EMT6 mouse tumors. Int. J. Radiat. Oncol. Biol. Phys., 6:311–318, 1980.

    Article  PubMed  CAS  Google Scholar 

  13. Evans, S. M., and Koch, C. J. Characterization of the 9L glioma as a tissue isolated epigastric implant. Radiat. Oncol. Invest., 2:134–143, 1994.

    Article  Google Scholar 

  14. Lord, E. M., Harwell, L., and Koch, C. J. Detection of hypoxic cells by monoclonal antibody recognizing 2-nitroimidazole adducts. Cancer Res., 53:5271–5276, 1993.

    Google Scholar 

  15. Southwick, P. L., Ernst, L. A., Tauriello, E. W, Parker, S. R., Mujumdar, R. B., Mujumbdar, S. R., Clever, H. A., and Waggoner, A. S. Cyanine dye labeling reagents — carboxymethylindocyanine succinimidyl esters. Cytometry, 11:418–430, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Laughlin, K. M., Evans, S. M., Lord, E. M., and Koch, C. J. Biodistribution of EF5 [2-(2-nitro-iH-imida-zole-lyl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide] in BALB/c mice bearing EMT6tumors; implications for oxygen measurements in normal and tumor tissues. Journal of Pharmacology and Experimental Therapeutics, 277: 1049–1057, 1996.

    PubMed  CAS  Google Scholar 

  17. Koch, C. J., Giandomenico, A. R., and Lee Iyengar, C. W. Bioreductive metabolism of AF-2 [2(2-furyl)-3-(5-nitro-2-furyl)acrylamide] combined with 2-nitroimidazole radiosensitizing agents. Biochem. Pharmacol., 45:1029–1036, 1993.

    Article  Google Scholar 

  18. Evans S.M., Jenkins W.T., Joiner B., Lord E.M. and Koch C.J. 2-nitroimidazole (EF5) binding predicts radiation resistance in individual 9L subcutaneous tumors Cancer Res., 56: 405–411, 1996.

    PubMed  CAS  Google Scholar 

  19. Moulder, J. E., and Rockwell, S. Tumor hypoxia: its impact on cancer therapy. Cancer and Metastasis Rev., 5:313–341, 1987.

    Article  CAS  Google Scholar 

  20. Moulder, J. E., and Martin, D. F. Hypoxic fraction determinations in the BA1112 rat sarcoma: variations within and among assay techniques. Rad. Res., 99, 1984.

    Google Scholar 

  21. Tannock, I. F. Oxygen diffusion and the distribution of radiosensitivity in tumours. Br. J. Radiol., 45:515–524, 1972.

    Article  PubMed  CAS  Google Scholar 

  22. Lartigau, E., Lusinchi, A., Randrianarivelo, H., Weeger, P., Wibault, P., Luboinski, B., Eschwege, F., and Guichard, M. Oxygen tension distribution before and during accelerated radiotherapy and carbogen breathing: preliminary results. pp. 305–312 In: Tumor Oxygenation. Eds. Vaupel, Kelleher, Gunderoth. Gustav Fischer Verlag, Stuttgart, 1995.

    Google Scholar 

  23. Lawrence, V., Ward, R., and Bleenen, N. Tumor pO2 distribution in patients treated with the combination of nicotinamide and carbogen breathing. In: Tumor Oxygenation. Eds. Vaupel, Kelleher, Gunderoth. Gustav Fischer Verlag, Stuttgart, 1995.

    Google Scholar 

  24. Biade, S., Yeh, K. A., Milito, S. J., Brown, D. Q., Lanciano, R. M., and Chapman, J. D. Electrode measurements of oxygen tensions in rat prostate carcinomas and comparisons with other assays. pp. 83–94. In: Tumor Oxygenation. Eds. Vaupel, Kelleher, Gunderoth. Gustav Fischer Verlag, Stuttgart, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evans, S.M., Jenkins, W.T., Shapiro, M., Koch, C.J. (1997). Evaluation of the Concept of “Hypoxic Fraction” as a Descriptor of Tumor Oxygenation Status. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics