Skip to main content

Myocardial Adaptation to Acute Oxygen Shortage

A Kinetic Analysis

  • Chapter
Oxygen Transport to Tissue XVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

  • 258 Accesses

Abstract

In this study, we examined the bioenergetic mechanisms underlying myocardial adaptation to O2-limited perfusion. Shortened O2 supply to contracting tissue results in nearly immediate metabolic and performance decline due to fast turnover rate of high-energy phosphates compared to their intracellular concentration.1 Thus, to maintain adequate ATP production, tissue is forced to divert from aerobic to anaerobic pathways: although less efficient than aerobic ones, glycolytic ATP production under hypoxic, high-flow conditions may account for up to half of total energy requirements.2 However, if low O2 supply is associated with reduced flow, the heart preferentially downregulates energy demand to meet supply.3 Whereas these processes were verified during sustained ischemia or hypoxia, it appears important to assess the mechanisms underlying acute regulation of performance. The main reason for this is the need to understand to a greater extent reperfusion injury and the generation of endogenous myocardial protection, both of which may be strictly linked to bioenergetic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Hochachka and G.O. Matheson, Regulating ATP turnover rates over broad dynamic work ranges in skeletal muscles. J. Appl. Physiol. 73:1697, (1992).

    PubMed  CAS  Google Scholar 

  2. M. Samaja, S. Casalini, S. Allibardi and A. Corno, Effects of energy demand in ischemic and in hypoxemic isolated rat hearts, in: “Oxygen Transport to Tissue XVI,” M.C. Hogan, O. Mathieu-Costello, D.C. Poole and P.D. Wagner, eds., Plenum Press, New York (1994) p.393.

    Chapter  Google Scholar 

  3. M. Samaja, S. Casalini, S. Allibardi, A. Corno and S.L. Chierchia, Regulation of bioenergetics in O2-lim-ited isolated rat hearts. J. Appl. Physiol. 77:2530, (1994).

    PubMed  CAS  Google Scholar 

  4. M. Samaja, R. Motterlini, F. Santoro, G. Dell’Antonio and A. Corno, Oxidative injury in reoxygenated and reperfused hearts. Free Rad. Biol Med. 16:255, (1994).

    Article  PubMed  CAS  Google Scholar 

  5. M. Samaja, R. Motterlini, S. Allibardi, S. Casalini, G. Merati, A. Corno and S.L. Chierchia, Myocardial metabolism and function in acutely ischemic and hypoxemic isolated rat hearts. J. Mol. Cell. Cardiol. 27:1213,(1995).

    Article  PubMed  CAS  Google Scholar 

  6. R.S. Carr and J.M. Neff, Quantitative semi-automated enzymatic assay for tissue glycogen. Comp. Bioch. Physiol. 77B:447, (1984).

    CAS  Google Scholar 

  7. M.C. Hogan, R.S. Richardson and S.S. Kurdak, Initial fall in skeletal muscle force development during ischemia is related to oxygen availability. J. Appl. Physiol. (1995).(In Press)

    Google Scholar 

  8. J.A. Lee and D.G. Allen, The effects of repeated exposure to anoxia on intracellular calcium, glycogen and lactate in isolated ferret heart muscle. Pflug. Arch. 413:83, (1988).

    Article  CAS  Google Scholar 

  9. W.M. Vogel, C.S. Apstein, L.L. Briggs, W.H. Gaasch and J. Ahn, Acute alterations in left ventricular diastolic chamber stiffness. Role of the “erectile” affect of coronary arterial pressure and flow in normal and damaged hearts. Circ. Res. 51:465, (1982).

    Article  PubMed  CAS  Google Scholar 

  10. P.M. Matthews, D.J. Taylor and G.K. Radda, Biochemical mechanisms of acute contracture failure in the hypoxic rat heart. Cardiovasc. Res. 20:13, (1986).

    Article  PubMed  CAS  Google Scholar 

  11. H.Z. Zhou, D. Malhotra and J.I. Shapiro, Contractile dysfunction during metabolic acidosis: role of impaired energy metabolism. Am. J. Physiol. 261:H1481, (1991).

    PubMed  CAS  Google Scholar 

  12. J.B. Hak, J.H.G.M. Van Beek, M.H. Van Wijhe and N. Westerhof, Dynamics of myocardial lactate efflux after a step in heart rate in isolated rabbit hearts. Am. J. Physiol. 265:H2081, (1993).

    PubMed  CAS  Google Scholar 

  13. R.J. Connett, T.E.J. Gayeski and C.R. Honig, Energy sources in fully aerobic rest-work transitions: a new role for glycolysis. Am. J. Physiol. 248:H922, (1985).

    PubMed  CAS  Google Scholar 

  14. M.J. Achs, D. Garfinkel and L.H. Opie, Computer simulation of metabolism of glucose-perfused rat heart in a work-jump. Am. J. Physiol. 243:R389, (1982).

    PubMed  CAS  Google Scholar 

  15. J.L. Zweier and W.E. Jacobus, Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. J. Biol. Chem. 262:8015, (1987).

    PubMed  CAS  Google Scholar 

  16. J.R. Neely, C.F. Whitfield and H.E. Morgan, Regulation of glycogenolysis in hearts: effects of pressure development, glucose and FFA. Am. J. Physiol. 219:1083, (1970).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Merati, G., Allibardi, S., Marrazza, G., Mascini, M., Samaja, M. (1997). Myocardial Adaptation to Acute Oxygen Shortage. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics