Skip to main content

Age-Related Changes in Brain Metabolism and Vulnerability to Anoxia

  • Chapter
Oxygen Transport to Tissue XVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 411))

Abstract

Aged brain tissue suffers more histopathological damage following ischemia1 and greater electrophysiological dysfunction following anoxia2. In this short review, we consider the hypothesis that alterations in brain energy metabolism underlie age-related increases in brain vulnerability to anoxia, hypoxia, or ischemia (see also refs. 3–8). Investigations from our laboratories suggest that age-related decreases in the capacity of brain tissue to meet energy demand may limit recovery of ion homeostasis and excitability following large ion shifts or anoxia. These findings are consistent with earlier reports that glycolytic fluxes in rat brain during ischemia6 and glucose utilization during hyperthermia9 increased less with age and that resynthesis of depleted metabolic intermediates was slower in aged brains10. Such studies further suggest the hypothesis that age-related decreases in the capacity of brain tissue to match energy production to demand may limit recovery after metabolic insults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yao H, Sadoshima S, Ooboshi H, Sato Y, Uchimura H, Fujishima M. Age-related vulnerability to cerebral ischemia in spontaneously hypertensive rats. Stroke 1991;22(11): 1414–1418.

    Article  PubMed  CAS  Google Scholar 

  2. Roberts EL Jr, Rosenthal M, Sick TJ. Age-related modifications of potassium homeostasis and synaptic transmission during and after anoxia in rat hippocampal slices. Brain Res 1990;514(1): 111–118.

    Article  PubMed  CAS  Google Scholar 

  3. Benzi G, Arrigoni E, Agnoli A, et al. Influence of age upon the cerebral metabolic changes induced by acute hypoxia on the synaptosomes from dog brain. Exp Gerontol 1982; 17(1): 19–31.

    Article  PubMed  CAS  Google Scholar 

  4. Benzi G, Agnoli A, Giuffrida AM. Influence of aging on cerebral derangement by acute severe hypoxia during hypovolemic hypotension. Neurobiol Aging 1984;5(3):213–220.

    Article  PubMed  CAS  Google Scholar 

  5. Hoffman WE, Albrecht RF, Miletich DJ. Cerebrovascular response to hypoxia in young vs aged rats. Stroke 1984;15(1): 129–133.

    Article  PubMed  CAS  Google Scholar 

  6. Hoyer S, Krier C. Ischemia and aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol Aging 1986;7(1):23–29.

    Article  PubMed  CAS  Google Scholar 

  7. Benzi G, Giuffrida AM. Changes of synaptosomal energy metabolism induced by hypoxia during aging. Neurochem Res 1987;12:149–157.

    Article  PubMed  CAS  Google Scholar 

  8. Benzi G, Pastoris O, Vercesi L, Gorini A, Viganotti C, Villa RF. Energetic state of aged brain during hypoxia. Gerontol 1987;33(3–4):207–212.

    Article  CAS  Google Scholar 

  9. Parmacek MS, Fox JH, Harrison WH, Garron DC, Swenie D. Effect of aging on brain respiration and carbohydrate metabolism of CBF1 mice. Gerontol 1979;25(4):185–191.

    Article  CAS  Google Scholar 

  10. McNamara M, Miller A, Shen A, Wood J. Restitution of ATP and creatine phosphate after experimental depletion in young, adult, and old rats. Gerontol 1978;24:95–103.

    Article  CAS  Google Scholar 

  11. Sylvia AL, Rosenthal M. The effect of age and lung pathology on cytochrome a,a3 redox levels in rat cerebral cortex. Brain Res 1978; 146(1): 109–122.

    Article  PubMed  CAS  Google Scholar 

  12. Sylvia AL, Rosenthal M. Effects of age on brain oxidative metabolism in vivo. Brain Res 1979;165(2):235–248.

    Article  PubMed  CAS  Google Scholar 

  13. Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. Adv Enzymol 1956;17:65–134.

    CAS  Google Scholar 

  14. Milito SJ, Raffin CN, Rosenthal M, Sick TJ. Potassium ion homeostasis and mitochondrial redox activity in brain: relative changes as indicators of hypoxia. J Cereb Blood Flow Metab 1988;8(2): 155–162.

    Article  PubMed  CAS  Google Scholar 

  15. Martin FR, Roberts EL Jr, Rosenthal M. Potassium-induced increases in oxygen consumption are diminished by age in rat hippocampal slices [published erratum appears in Brain Res 1989 Sep 11;497(1):204]. Brain Res 1989;492(1–2):392–396.

    Article  PubMed  CAS  Google Scholar 

  16. Garbus J. Respiration of brain homogenates of old and young rats. Am J Physiol 1955; 183:618–619.

    Google Scholar 

  17. Lassen NA, Feinberg I, Lane MH. Bilateral studies of cerebral oxygen uptake in aged and normal subjects and in patients with organic dementia. J Clin Invest 1960;39:491–500.

    Article  PubMed  CAS  Google Scholar 

  18. Fox JH, Parmacek MS, Patel-Mandlik K. Effect of aging on brain respiration and carbohydrate metabolism of Syrian hamsters. Gerontologia 1975;21 (4):224–230.

    Article  PubMed  CAS  Google Scholar 

  19. Buchweitz-Milton E, Weiss HR. Cerebral oxygen consumption and blood flow in Fischer-344 rats of different ages. Neurobiol Aging 1987;8:55–60.

    Article  PubMed  CAS  Google Scholar 

  20. Sylvia AL, Harik SL, LaManna JC, Wilkerson T, Rosenthal M. Abnormalities of cerebral oxidative metabolism with aging and their relation to the central noradrenergic system. Gerontol 1983;29:248–261.

    Article  CAS  Google Scholar 

  21. Roberts EL, Chih CP. Age-related alterations in energy metabolism contribute to the increased vulnerability of the aging brain to anoxic damage. Brain Res 1995;678(1–2):83–90.

    Article  PubMed  CAS  Google Scholar 

  22. Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev 1985;65:101–147.

    PubMed  CAS  Google Scholar 

  23. Yamamoto C, Kurokawa M. Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP. Exp Brain Res 1970;10:159–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roberts, E.L., Chih, CP., Rosenthal, M. (1997). Age-Related Changes in Brain Metabolism and Vulnerability to Anoxia. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics