Skip to main content

Myoglobin Solvent Structure at Different Temperatures

  • Chapter
Neutrons in Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 64))

Abstract

The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, Bsn, versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35Å and 3.85Å. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Careri, G., Gratton, E., Yang, P.H., & Rupley, J.A., (1980). Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature, 284:572–573.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, X., & Schoenborn, B.P., (1990). Hydration in protein crystals. A neutron diffraction analysis of carbon-monoxymyoglobin. Acta Cryst., B46:195–208.

    CAS  Google Scholar 

  • Colombo, M.F., Rau, D.C., & Parsegian, V.A., (1992). Protein solvation in allosteric regulation: A water effect on hemoglobin. Science, 256:655–659.

    Article  PubMed  CAS  Google Scholar 

  • Edsall, J.T., & McKenzie, H.A., (1983). Water and protein. II. The location and dynamics of water in protein systems and its relation to their stability and properties. Adv. Biophys., 16:53–183.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, D., & Kauzmann, W., (1969). In The Structure and Properties of Water. Oxford University Press, p74 et seq.

    Google Scholar 

  • Fraunfelder, H., Hartmann, H., Karplus, M., Kuntz, I.D., Kuriyan, J., Parak, F., Petsko, G.A., Ringe, D., Tilton, R.F., Connolly, M.I., & Max, N., (1987). Thermal expansion of a protein. Biochemistry, 26:254–261.

    Article  Google Scholar 

  • Ibel, K., & Stuhrmann, H., (1975).Comparison of neutron and X-ray scattering of dilute myoglobin solutions. J. Mol. Biol., 93:255–265.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch, W., (1988). Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Cryst., 21:916–924.

    Article  CAS  Google Scholar 

  • Kellenberger, E., (1978). High resolution electron microscopy. Trends Biochem. Sci., 3(6): 135–137.

    Google Scholar 

  • Kuntz, I.D., & Kauzmann, W., (1974). Hydration of proteins and polypeptides. Adv. Protein Chem., 28:239–345.

    Article  PubMed  CAS  Google Scholar 

  • Lounnas, V., & Pettitt, B.M., (1994). Distribution function implied dynamics versus residence times and correlation: solvation shells of myoglobin. Proteins: Structure, Function and Genetics, 18:148–160.

    Article  CAS  Google Scholar 

  • Otting, G., Liepinsh, E., & Wuthlich, K., (1991). Protein hydration in aqueous solution. Science, 254:974–980.

    Article  PubMed  CAS  Google Scholar 

  • Parak, F., Hartmann, H., Aumann, K.D., Reuscher, H., Rennekamp, G., Barrunik, H., & Steigemann, W., (1987). Low temperature X-ray investigation of structural distributions in myoglobin. Eur. Biophys. J., 15:237–249.

    Article  PubMed  CAS  Google Scholar 

  • Parak, F., Hartmann, H., Schmidt, M., Corongiu, G., & Clementi, E., (1992). The hydration shell of myoglobin. Euro. Biophys. J., 21:313–320.

    CAS  Google Scholar 

  • Perutz, M.F., (1970). Stereochemistry of cooperative effects in haemoglobin. Nature, 228:726–734.

    Article  PubMed  CAS  Google Scholar 

  • Pflugrath, J.W., & Messerschmidt, A., (1987). Munich Area Detector NE Systems, V. 27.

    Google Scholar 

  • Rosen, D., (1963). Dielectric properties of protein powders with adsorbed water. Trans. Faraday Soc., 59:2178–2191.

    Article  CAS  Google Scholar 

  • Rupley, J.A., Gratton, E., & Careri, G., (1983). Water and globular proteins. Trends Biochem. Sci., 8:18–22.

    Article  CAS  Google Scholar 

  • Schoenborn, B.P., (1988). The solvent effect in protein crystals. A neutron diffraction analysis of solvent and ion density. J. Mol. Biol., 201:741–749.

    Article  PubMed  CAS  Google Scholar 

  • Takashima, S., & Schwan, H.P., (1965). Dielectric dispersion of crystalline powders of amino acids, pepides, and proteins. J. Phys. Chem., 69:4176–4182.

    Article  PubMed  CAS  Google Scholar 

  • Tilton, R.F., Dewan, J.C., & Petsko, G.A., (1992). Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320K. Biochemistry, 31:2469–2481.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.X., Bizawrri, A.R., Xu, Y.W., & Cannistraro, S., (1994). Molecular dynamics of copper plastocyanin: simulations of structure and dynamics as a function of hydration. Chem. Phys., 813:155–166.

    Article  Google Scholar 

  • Yang, P., & Rupley, J.A., (1979). Protein-water interactions. Heat capacity of the lysozyme-water system. Biochemistry, 18:2654–2661.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.C., Tilton, R.F., & Dewan, J.C., (1994). Thermal expansion of hen egg-white lysozyme. Comparison of the 1.9Å resolution structures of the tetragonal form of the enzyme at 100K and 298K. J. Mol. Biol., 235:302–317.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daniels, B.V., Schoenborn, B.P., Korszun, Z.R. (1996). Myoglobin Solvent Structure at Different Temperatures. In: Schoenborn, B.P., Knott, R.B. (eds) Neutrons in Biology. Basic Life Sciences, vol 64. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5847-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5847-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7680-4

  • Online ISBN: 978-1-4615-5847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics