Skip to main content

Neutron Scattering Studies of the Dynamics of Biopolymer-Water Systems Using Pulsed-Source Spectrometers

  • Chapter
Neutrons in Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 64))

Abstract

Energy-resolving neutron scattering techniques provide spatiotemporal data suitable for testing and refining analytical models or computer simulations of a variety of dynamical processes in biomolecular systems. This paper reviews experimental work on hydrated biopolymers at ISIS, the UK Pulsed Neutron Facility. Following an outline of basic concepts and a summary of the new instrumental capabilities, the progress made is illustrated by results from recent experiments in two areas: quasi-elastic scattering from highly hydrated polysaccharide gels (agarose and hyaluronate), and inelastic scattering from vibrational modes of slightly hydrated collagen fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albanese, G., & Deriu, A., (1979). High energy resolution X-ray spectroscopy. Rivista del Nuovo Cimento, 2:1–40.

    Article  Google Scholar 

  • Arnott, S., Mitra, A.K., & Raghunathan, S., (1983). Hyaluronic acid double helix. J. Mol. Biol., 169:861–872.

    Article  PubMed  CAS  Google Scholar 

  • Atkins, E.D.T., & Sheehan, J.K., (1973). Hyaluronic acid: A novel, double helical molecule. Science, 179:560–563.

    Article  Google Scholar 

  • Baron, M.H., Filiaux, F., & Tomkinson, J., (1989). Inelastic neutron scattering study of the proton dynamics in polyglycine I and II. Third European Conference on Spectroscopy of Biological Molecules. Bologna.

    Google Scholar 

  • Barthés, M., Eckert, J., Johnson, S.W., Moret, J., Swanson, B.I., & Unkefer, C.J., (1992). Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering. J. de Physique I, 2:1929–1939.

    Article  Google Scholar 

  • Bella, J., Eaton, M., Brodsky, B., & Berman, H.M., (1994). Crystal and molecular structure of a collagen-like peptide at 1.9Ã… resolution. Science, 266:75–79.

    Article  PubMed  CAS  Google Scholar 

  • Bée, M., (1988). Quasi-elastic Neutron Scattering. Adam Hilger, Bristol.

    Google Scholar 

  • Berney, C.V., Renugopalakrishnan, V., & Bhatnagar, R.S., (1987). Collagen: an inelastic neutron scattering study of low frequency vibrational modes. Biophys. J., 52:343–345.

    Article  PubMed  CAS  Google Scholar 

  • Boland, B., & Whapham, S., (editors) (1993). ISIS Experimental Facilities. SERC, Rutherford Appleton Laboratory, Chilton, UK.

    Google Scholar 

  • Burchard, W., & Ross-Murphy, S.B., (editors) (1990). Physical Networks: Polymers and Gels. Elsevier, Amsterdam.

    Google Scholar 

  • Carlile, C.J., & Adams, M.A., (1992). The design of the IRIS inelastic neutron spectrometer and improvements to its analysers. Physica B, 182:431–440.

    Article  CAS  Google Scholar 

  • Cavatorta, F., Deriu, A., DiCola, D., & Middendorf, H.D., (1994). Diffusive properties of water studied by incoherent quasi-elastic neutron scattering. J. Phys.: Condensed Matter, 6:A113–Al 17.

    Article  CAS  Google Scholar 

  • Cusack, S., & Lees, S., (1984). Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers. Biopolymers, 23:337–351.

    Article  PubMed  CAS  Google Scholar 

  • Deriu, A., Cavatorta, F., DiCola, D., & Middendorf, H.D., (1993a). Large-scale structure and dynamics of polysaccharide gels. J. de Physique IV-C1, 3:237–247.

    CAS  Google Scholar 

  • Deriu, A., Cavatorta, F., Cabrini, D., Carlile, C.J., & Middendorf, H.D., (1993b). Water dynamics in biopolymer gels by quasi-elastic neutron scattering. Europhys. Lett., 24:351–357.

    Article  CAS  Google Scholar 

  • De Rossi, D., Kajiwara, K., Osada, Y., & Yamauchi, A., (editors) (1991). Polymer Gels: Fundamentals and Biomedical Applications. Plenum Publishing Corporation, New York.

    Google Scholar 

  • Djabourov, M., Clark, A.H., Rowlands, D.W., & Ross-Murphy, S.B., (1989). Small-angle X-ray scattering characterization of agarose sols and gels. Macromolecules, 22:180–188.

    Article  CAS  Google Scholar 

  • Dormoy, Y., & Candau, J., (1991). Transient electric birefringence study of highly dilute agarose solutions. Biopolymers, 31:109–117.

    Article  CAS  Google Scholar 

  • Eckert, J., & Kearley, G.J., (editors) (1992). Spectroscopic applications of inelastic neutron scattering: Theory and practice. Spectrochimica Acta, 48A:269–476.

    Google Scholar 

  • Egelstaff, P.A., Gray, C.G., Gubbins, K.E., & Mo, K.C., (1975). Theory of inelastic neutron scattering from molecular fluids. J. Statist. Phys., 13:315–330.

    Article  Google Scholar 

  • Fanconi, B., (1980). Molecular vibrations of polymers. Ann. Rev. Phys. Chem., 31:265–291.

    Article  CAS  Google Scholar 

  • Fanconi, B., & Finegold, L., (1975). Vibrational states of the biopolymer polyglycine II: theory and experiment. Science, 190:458–459.

    Article  PubMed  CAS  Google Scholar 

  • Finney, J.L., (1986). The role of water perturbations in biological processes. In Water and Aqueous Solutions. (G.W. Neilson and J.E. Enderby, editors). pp227–244. Adam Hilger, Bristol.

    Google Scholar 

  • Filiaux, F., Fontaine, J.P., Baron, M.-H., Kearley, G.J., & Tomkinson, J., (1993). Inelastic neutron-scattering study of the proton dynamics in N-methyl acetamide at 20K. Chem. Phys., 176:249–278.

    Article  Google Scholar 

  • Fraser, R.D.B., MacRae, T.P., & Miller, A., (1987). Molecular packing in type I collagen fibrils. J. Mol. Biol., 193:115–125.

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow, J.M., (editor) (1990). Molecular Dynamics: Applications in Molecular Biology. Macmillan Press, Basingstoke.

    Google Scholar 

  • Grigera, J.R., & Berendsen, H.J.C., (1979). The molecular details of collagen hydration. Biopolymers, 18:47–57.

    Article  CAS  Google Scholar 

  • Harley, R., James, D., Miller, A., & White, J.W., (1977). Phonons and the elastic moduli of collagen and muscle. Nature, 267:285–287.

    Article  PubMed  CAS  Google Scholar 

  • Hayward, R.L., Middendorf, H.D., Wanderlingh, U., & Smith, J.C., (1995). Normal mode and anharmonic dynamics in crystalline acetanilide: a combined computer simulation and inelastic neutron scattering analysis. J. Chem. Phys., (in press).

    Google Scholar 

  • Jeffrey, G.A., & Saenger, W., (1991). Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Kadler, K., (1994). Extracellular matrix 1: fibril-forming collagens. Protein Profile, 1:519–612.

    PubMed  CAS  Google Scholar 

  • Karplus, M., & Petsko, G., (1990). Molecular dynamics simulations in biology. Nature, 347:631–639.

    Article  PubMed  CAS  Google Scholar 

  • Kearley, G.J., Filiaux, F., Baron, M.-H., Bennington, S., & Tomkinson, J., (1994). A new look at proton transfer dynamics along hydrogen bonds in amides and peptides. Science, 264:1285–1289.

    Article  PubMed  CAS  Google Scholar 

  • Krimm, S., & Bandekar, J., (1986). Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Prot. Chem., 38:181–364.

    Article  CAS  Google Scholar 

  • Krueger, S., Andrews, A.P., & Nossal, R., (1994). Small angle neutron scattering studies of structural characteristics of agarose gels. Biophys. Chem., 53:85–94.

    Article  PubMed  CAS  Google Scholar 

  • Langan, P., Forsyth, V.T., Mahendrasingam, A., Dauvergne, M.T., Mason, S.A., Wilson, C.C., & Fuller, W., (1995). Neutron fibre diffraction studies of DNA hydration. Physica B (in press).

    Google Scholar 

  • Lovesey, S.W., (1984). Theory of Neutron Scattering from Condensed Matter, Vol.1. Clarendon Press, Oxford.

    Google Scholar 

  • Martel, P., (1992). Biophysical aspects of neutron scattering of vibrational modes in proteins. Prog. Biophys. Mol. Biol., 57:129–179.

    Article  PubMed  CAS  Google Scholar 

  • Mayers, J., & Evans, A.C., (1991). Measurement of atomic momentum distribution functions by neutron Compton scattering. Report RAL-91–048. Rutherford Appleton Laboratory, Chilton, U.K.

    Google Scholar 

  • McDonald, J.A., (1988). Extracellular matrix assembly. Ann. Rev. Cell Biol., 4:183–208.

    Article  PubMed  CAS  Google Scholar 

  • Middendorf, H.D., (1984a). Biophysical applications of quasi-elastic and inelastic neutron scattering. Ann. Rev. Biophys. Bioeng., 13:425–451.

    Article  CAS  Google Scholar 

  • Middendorf, H.D., (1984b). Inelastic scattering from biomolecules: Principles and prospects. In Neutrons in Biology. (B.P. Schoenborn, editor). pp401–436. Plenum Publishing Corporation, New York.

    Google Scholar 

  • Middendorf, H.D., (1992). Neutron studies of the dynamics of globular proteins. Physica B, 182:415–420.

    Article  CAS  Google Scholar 

  • Middendorf, H.D., (1994). Fibrous biopolymers: New experimental approaches using pulsed-source neutron techniques. In Hydrogen Bond Networks. (M.-C. Bellissent-Funel and J.C. Dore, editors). pp529–532. Kluwer, Dordrecht.

    Google Scholar 

  • Middendorf, H.D., & Hotz de Baar, O.F.A., (1996). Simulation of small-angle scattering from complex, hierarchically structured biopolymer networks. Molec. Phys., (in press).

    Google Scholar 

  • Middendorf, H.D., & Randall, J.T., (1985). Neutron spectroscopy and protein dynamics. In Structure and Motion: Membranes, Nucleic Acids and Proteins. (E. Clementi, G. Corogiu, M.H. Sarma and R.H. Sarma, editors). pp219–241. Adenine Press, New York.

    Google Scholar 

  • Middendorf, H.D., Cavatorta, F., & Deriu, A., (1990). Small-angle neutron scattering from polysaccharide gels. Progr. Colloid Polym. Sci., 81:275–278.

    Google Scholar 

  • Middendorf, H.D., Cavatorta, F., Deriu, A., & Steigenberger, U., (1989). Quasi-elastic neutron scattering from polysaccharide gels. Physica B, 156& 157:456–460.

    Article  Google Scholar 

  • Middendorf, H.D., DiCola, D., Cavatorta, F., Deriu, A., & Carlile, C.J., (1994). Water dynamics in charged and uncharged polysaccharides gels by quasi-elastic neutron scattering. Biophys. Chem., 47:145–153.

    Article  Google Scholar 

  • Middendorf, H.D., Hayward, R.L., Parker, S.F., Bradshaw, J., & Miller, A., (1995). Neutron spectroscopy of collagen and model polypeptides. Biophys. J., 69:660–673.

    Article  PubMed  CAS  Google Scholar 

  • Miller, A., (1984). Collagen: the organic matrix of bone. Phil. Trans. R. Soc. Lond., B304:455–477.

    Google Scholar 

  • Newport, R.J., Rainford, B.D., & Cywinski, R., (editors) (1988). Neutron Scattering at a Pulsed Source. Adam Hilger, Bristol.

    Google Scholar 

  • Nimtz, G., Marquardt, P., Stauffer, D., & Weiss. W., (1988). Raoult’s law and the melting point depression in mesoscopic systems. Science, 242:1671–1675.

    Article  PubMed  CAS  Google Scholar 

  • Ohmine, I., Tanaka, H., & Wolynes, P.G., (1988). Large local energy fluctuations in water. II. Cooperative motions and fluctuations. J. Chem. Phys., 89:5852–5860.

    Article  Google Scholar 

  • Penfold, J., & Tomkinson, J., (1986). The ISIS time-focussed crystal analyser spectrometer, TFXA. Report RAL-86–019. Rutherford Appleton Laboratory, Chilton, U.K.

    Google Scholar 

  • Peticolas, W.L., (1979). Low frequency vibrations and the dynamics of proteins and polypeptides. Methods Enzymol., 61:425–458.

    Article  PubMed  CAS  Google Scholar 

  • Randall, J.T., & Vaughan, J.M., (1979). Brillouin scattering in systems of biological significance. Phil. Trans. R. Soc. Lond., A293:341–348.

    Article  Google Scholar 

  • Richter, D., (1992). Neutron spin-echo investigations on molecular motion in polymers. Physica B, 182:7–14.

    Article  Google Scholar 

  • Rupley, J.A., & Careri, G., (1991). Protein hydration and function. Adv. Protein Chem., 41:38–129.

    Google Scholar 

  • Schoenborn, B.P., (editor) (1984). Neutrons in Biology. Plenum Press, New York.

    Google Scholar 

  • Schreiner, L.J., Pintar, M.M., Dianoux, A.J., Volino, F., & Rupprecht, A., (1988). Hydration of sodium DNA by neutron quasi-elastic scattering. Biophys. J., 53:119–122.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J., (1991). Protein dynamics: comparison of simulations with inelastic scattering experiments. Q. Rev. Biophys., 24:227–291.

    Article  PubMed  CAS  Google Scholar 

  • Stuhrmann, H.B., & Miller, A., (1978). Small-angle scattering of biological structures. J. Appl. Cryst., 11:325–340.

    Article  CAS  Google Scholar 

  • Teixeira, J., Bellissent-Funel, M.-C., Chen, S.H., & Dianoux, A.J., (1985). Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Phys. Rev. B, 31:1913–1917.

    CAS  Google Scholar 

  • Teixeira, J., (1993). The physics of liquid water. J. de Physique IV, Coll., C1–3:163–169.

    Google Scholar 

  • Warner, M., Lovesey, S.W., & Smith, J., (1983). The theory of neutron scattering from mixed harmonic solids. Z. Phys. B—Condensed Matter, 51:109–126.

    Article  CAS  Google Scholar 

  • White, J.W., (1976). Inelastic neutron scattering from synthetic and biological polymers. In Neutron Scattering for the Analysis of Biological Structures, VI, pp3–26. Brookhaven Symp. Biol. Vol.27. (B.P. Schoenborn, editor). Brookhaven National Laboratory, Upton, New York.

    Google Scholar 

  • Windsor, C.G., (1981). Pulsed Neutron Scattering. Taylor and Francis, London.

    Google Scholar 

  • Zaccaï, G., (editor) (1994). Special issue on neutrons in biology. Biophys. Chem., 47:1–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Middendorf, H.D., Miller, A. (1996). Neutron Scattering Studies of the Dynamics of Biopolymer-Water Systems Using Pulsed-Source Spectrometers. In: Schoenborn, B.P., Knott, R.B. (eds) Neutrons in Biology. Basic Life Sciences, vol 64. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5847-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5847-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7680-4

  • Online ISBN: 978-1-4615-5847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics