Skip to main content

Structural Model of the 50S Subunit of E. Coli Ribosomes from Solution Scattering

  • Chapter
Neutrons in Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 64))

Abstract

The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Based on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40Å. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA.

On leave from the Institute of Crystallography Russian Academy of Sciences Leninsky pr. 59 117333 Moscow, Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boulin, C., Kempf, R., Koch, M.H.J., & McLaughlin, S.M., (1986). Data appraisal, evaluation and display for synchrotron radiation experiments: hardware and software. Nucl. Iustrum. Methods, A249:399–407.

    Article  CAS  Google Scholar 

  • Boulin, C.J., Kempf, R., Gabriel, A., & Koch, M.H.J., (1988). Data acquisition systems for linear and area X-ray detectors using delay line readout. Nucl. Iustrum. Methods, A269:312–320.

    Article  CAS  Google Scholar 

  • Edmonds, A.R., (1957). Angular Momentum in Quantum Mechanics. Princeton: Princeton Univ. Press.

    Google Scholar 

  • Feigin, L.A., & Svergun, D.I., (1987). Structure Analysis by Small-Angle X-ray and Neutron Scattering. Plenum Press, New York.

    Google Scholar 

  • Frank, J., Verschoor, A., Radermacher, M., & Wagenknecht, T., (1990). Morphologies of eubacterial and eucaryotic ribosomes as determined by three-dimensional electron microscopy. In The Ribosome — Structure, Function and Evolution (W. Hill editor) ASM, Washington, DC, pp. 107–113.

    Google Scholar 

  • Frank, J., Penczek, P., Grassucci, R., & Srivastava, S., (1991). Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice: the distribution of ribosomal RNA. J. Cell Biol., 115:597–605.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, A., & Dauvergne, F., (1982). The localization method used at EMBL. Nucl. Iustrum. Methods, 201:223–224.

    Article  CAS  Google Scholar 

  • Gavrilova, L.P., Kostiashkina, O.E., Koteliansky, V.E., Rutkevich, N.M., & Spirin, A.S., (1976). Factor-free (‘Non-enzymic’) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J. Mol. Biol., 101:537–552.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, S.C., (1969). Structure of tomato bushy stunt virus. I. The spherically averaged electron density. J. Mol. Biol., 42:457–483.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe, W., Oettl, H., & Tietz, H.R., (1986). Negatively stained 50S ribosomal subunits of Escherichia coli. J. Mol. Biol., 192:291–322.

    CAS  Google Scholar 

  • Ibel, K., & Stuhrmann, H.B., (1975). Comparison of neutron and X-ray scattering of dilute myoglobin solutions. J. Mol. Biol., 93:255–265.

    Article  PubMed  CAS  Google Scholar 

  • Kiselev, N.A., Stelmashchuk, V.Ya., Orlova, E.V., Vasiliev, V.D., & Seiivanova, O.M., (1982). Strand-like structures and their three-dimensional organization in the large subunit of the Escherichia coli ribosome. Molec. Biol. Rep., 8:191–197.

    Article  CAS  Google Scholar 

  • König, S., Svergun, D.I., Koch, M.H.J., Hübner, G., & Schellenberger, A., (1993). The influence of the effectors of yeast pyruvate decarboxylase (PDC) on the conformist of the dimers and tetramers and their pH-dependent equilibrium. Eur. Biophys. J., 22:185–194.

    Article  PubMed  Google Scholar 

  • Koch, M.H.J., & Bordas, J., (1983). X-ray diffraction and scattering on disordered systems using synchrotron radiation. Nucl. Instram. Methods, 208:461–469.

    Article  CAS  Google Scholar 

  • Koch, M.H.J., & Stuhrmann, H.B., (1979). Neutron scattering studies of ribosomes. In Methods Enzymol. (K. Moldave and L. Grossman editors) Academic Press, New York, vol. LIX, pp670–706.

    Google Scholar 

  • Korn, A.P., Elson, D., & Spitnik-Elson, P., (1983a). A survey of 50S ribosomal subunits by dark field electron microscopy. Eur. J. Cell Biol., 31:325–333.

    PubMed  CAS  Google Scholar 

  • Korn, A.P., Spitnik-Elson, P., Elson, D., & Ottensmeyer, F.P., (1983b). Specific visualization of ribosomal RNA in the intact ribosome by electron spectroscopic imaging. Eur. J. Cell Biol., 31:334–340.

    PubMed  CAS  Google Scholar 

  • Kühlbrandt, W., & Unwin, P.N.T., (1982). Distribution of RNA and protein in crystalline eucaryotic ribosomes. J. Mol. Biol., 156:431–448.

    Article  PubMed  Google Scholar 

  • Lake, J.A., (1976). Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J. Mol. Biol., 105:131–159.

    Article  PubMed  CAS  Google Scholar 

  • Lake, J.A., (1985). Evolving ribosome structure: domains in archaebacteria, eubacteria, eocytes and eucaryotes. Ann. Rev. Biochem., 54:507–539.

    Article  PubMed  CAS  Google Scholar 

  • Lebech, B., (1990). Neutron scattering facilities at Risø. Neutron News, 1:7–13.

    Google Scholar 

  • May, R.P., Nowotny, V., Nowotny, P., Voss, H., & Nierhaus, K.H., (1992). Inter-protein distances within the large subunit from Escherichia coli ribosomes. EMBO Journal, 11:373–378.

    PubMed  CAS  Google Scholar 

  • Meisenberger, O., Pilz, I., Stöffler-Meilicke, M., & Stöffler, G., (1984). Small-angle X-ray study of the 50S ribosomal subunit of Escherichia coli. A comparison of different models. Biochem. Biophys. Acta, 781:225–233.

    Article  PubMed  CAS  Google Scholar 

  • Moore, P.B., Engelman, D.M., & Schoenborn, B.P., (1974). Asymmetry of the 50S ribosomal subunit of Escherichia coli. Proc. Natl. Acad. Sci. USA, 71:172–176.

    Article  PubMed  CAS  Google Scholar 

  • Moore, P.B., (1980). Small-angle scattering. Information content and error analysis. J. Appl. Cryst., 13:168–175.

    Article  CAS  Google Scholar 

  • Nierhaus, K.H., (1982). Structure, assembly and function of ribosomes. Current Topics in Microbiology and Immunology, 97:81–155.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, J.Skov, Posselt, D., & Mortensen, K., (1990). Analytical treatment of the resolution function for small-angle scattering. J. Appl. Cryst., 23:321–333.

    Article  Google Scholar 

  • Radermacher, M., Srivastava, S., & Frank, J., (1992). The structure of the 50S ribosomal subunit from E.coli in frozen hydrated preparation reconstructed with secret. Proceedings of EUREM 92, Granada, pp.19–20.

    Google Scholar 

  • Radermacher, M., Wagenknecht, T., Verschoor, A., & Frank, J., (1987). Three-dimensional structure of the large ribosomal subunit from Escherichia coli. EMBO Journal, 6:1107–1114.

    CAS  Google Scholar 

  • Serdyuk, I.N., & Grenader, A.K., (1977). On the distribution and packing of RNA and protein in ribosomes. Eur. J. Biochem., 79:495–504.

    Article  PubMed  CAS  Google Scholar 

  • Serdyuk, I.N., Grenader, A.K., & Koteliansky, V.E., (1977). Study of 30S ribosomal subparticle protein-deficient ribonucleoprotein derivative by X-ray diffusion scattering. Eur. J. Biochem., 79:505–510.

    Article  PubMed  CAS  Google Scholar 

  • Serdyuk, I.N., Grenader, A.K., & Zaccai, G., (1979). Study of the internal structure of Escherichia coli ribosomes by neutron and X-ray scattering. J. Mol. Biol., 135:691–707.

    Article  PubMed  CAS  Google Scholar 

  • Serdyuk, I.N., (1979). A method of joint use of electromagnetic and neutron scattering: a study of internal ribosomal structure. In Methods Enzymol. (K. Moldave and L. Grossman editors), Academic Press, New York, vol. LIX, pp. 750–775.

    Google Scholar 

  • Stöffler-Meilicke, M., & Stöffler, G., (1990). Topography of the ribosomal proteins from Escherichia coli within the intact subunits as determined by immunoelectron microscopy and protein-protein cross-linking. In The Ribosome, Structure, Function and Evolution (W. Hill editor) ASM, Washington, pp 123–133.

    Google Scholar 

  • Stöffler, G., & Stöffler-Meilicke, M., (1986). Immuno electron microscopy of Escherichia coli ribosomes. In Structure, Function and Genetics of Ribosomes (B. Hardesty and G. Kramer, editors), Springer, New York, pp28–46.

    Chapter  Google Scholar 

  • Stuhrmann, H.B., (1970a). Interpretation of small-angle scattering of dilute solutions and gases. A representation of the structures related to a one-particle scattering functions. Acta Cryst., A26:297–306.

    Google Scholar 

  • Stuhrmann, H.B., (1970b). Ein neues Verfahren zur Bestimmung der Oberflächenform und der inneren Struktur von gelösten globulären Proteinen aus Röntgenkleinwinkelmessungen. Zeitschrift für Physikaliche Chemie Neue Folge, 72:177–184; 185–198.

    Article  CAS  Google Scholar 

  • Stuhrmann, H.B., & Kirste, R.G., (1965). Elimination der intrapartikulären Untergrundstreuung bei der Röntgenkleinwinkelstreuung am kompakten Teilchen (Proteinen). Zeitschrift für Physikaliche Chemie Neue Folge, 46:247–250.

    Article  CAS  Google Scholar 

  • Stuhrmann, H.B., Koch, M.H.J., Parfait, R., Haas, J., Ibel, K., & Crichton, R.R., (1977). Shape of the 50S subunit of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA, 74:2316–2320.

    Article  PubMed  CAS  Google Scholar 

  • Svergun, D.I., (1991). Mathematical methods in small-angle scattering data analysis. J. Appl. Cryst., 24:485–492.

    Article  CAS  Google Scholar 

  • Svergun, D.I., (1992). Determination of the regularization parameter in indirect transform methods using perceptual criteria. J. Appl. Cryst., 25:495–503.

    Article  Google Scholar 

  • Svergun, D.I., (1994). Solution scattering from biopolymers: advanced contrast variation data analysis. Acta Cryst., A50:391–402.

    CAS  Google Scholar 

  • Svergun, D.I., & Stuhrmann, H.B., (1991). New developments in direct shape determination from small-angle scattering. 1. Theory and model calculations. Acta Cryst., A47:736–744.

    Google Scholar 

  • Svergun, D.I., Semenyuk, A.V., & Feigin, L.A., (1988). Small-angle scattering-data treatment by the regularization method. Acta Cryst., A44:244–250.

    Google Scholar 

  • Tardieu, A., & Vachette, P., (1982). Analysis of models of irregular shape by solution X-ray scattering: the case of the 50S ribosomal subunit from E.coli. EMBO Journal, 1:35–40.

    CAS  Google Scholar 

  • Taupin, D., & Luzzati, V., (1982). Informational content and retrieval in solution scattering studies. I. Degrees of freedom and data reduction. J. Appl. Cryst., 15:289–300.

    Article  CAS  Google Scholar 

  • Vasiliev, V.D., Selivanova, O.M., & Ryazantcev, S.N., (1983). Structure of the Escherichia coli 50S ribosomal subunit. J. Mol. Biol., 171:561–569.

    Article  PubMed  CAS  Google Scholar 

  • Walleczek, J., Schüler, D., Stöffler-Meilicke, M., Brimacombe, R., & Stöffler, G., (1988). A model for the spatial arrangement of the proteins in the large subunit of the Escherichia coli ribosome. EMBO Journal, 7:3571–3576.

    PubMed  CAS  Google Scholar 

  • Wittmann H.G., (1983). Architecture of procaryotic ribosomes. Ann. Rev. Biochem., 52:35–65.

    Article  PubMed  CAS  Google Scholar 

  • Yonath, A., Leonard, K.R., & Wittmann, H.G., (1987). A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science, 236:813–816.

    Article  PubMed  CAS  Google Scholar 

  • Yonath, A., & Berkowitch-Yellin, Z., (1993). Hollows, voids, gaps and tunnels in the ribosome. Curr. Opin. Struct. Biol., 3:175–181.

    Article  CAS  Google Scholar 

  • Yonath, A., (1992). Approaching atomic resolution in crystallography of ribosomes. Annu. Rev. Biophys. Biomol. Struct., 21:77–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Svergun, D.I., Koch, M.H.J., Pedersen, J.S., Serdyuk, I.N. (1996). Structural Model of the 50S Subunit of E. Coli Ribosomes from Solution Scattering. In: Schoenborn, B.P., Knott, R.B. (eds) Neutrons in Biology. Basic Life Sciences, vol 64. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5847-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5847-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7680-4

  • Online ISBN: 978-1-4615-5847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics