Skip to main content

Comparison between Experimental Data and a Langevin Particle Dispersion Model Including Dry Deposition

  • Chapter
  • 180 Accesses

Part of the book series: NATO · Challenges of Modern Society ((NATS,volume 21))

Abstract

Random walk models are powerful tools to describe turbulent diffusion in the atmospheric boundary layer. These models describe the evolution of a passive tracers (“particles”) in phase-space via a stochastic differential equation, usually the Langevin equation. They have developed from early applications to homogeneous turbulence (Lin and Reid, 1962) via applications to both inhomogeneous turbulence (Wilson et. al., 1981) and skewed turbulence (Baerentsen and Berkowitz, 1984).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baerentsen, J. H. and Berkowicz, R., 1984, Monte Carlo simulation of plume dispersion in the convective boundary layer, Atmos. Environ., 18:701–712.

    Article  Google Scholar 

  • Barad, M. L., 1958, Project Prairie Grass, a Field Program in Diffusion, Report AFCRLTR235 (2 volumes).

    Google Scholar 

  • Boughton, B. A., Delaurentis, J. M. and Dunn, W. E., 1987, A stochastic model of particle dispersion in the atmospherc, Boundary-Layer Meteorol. 40:147–163.

    Article  Google Scholar 

  • Chamberlain, A. C., 1966, Transport of gases to and from grass and grass-like surfaces, Proc. R. Soc. Lond. A. 290:236–265.

    Article  Google Scholar 

  • Dyer, A. J., 1974, A review of flux profile relationships, Boundary-Layer Meterol. 7:363–372.

    Article  Google Scholar 

  • Garland, J. A., 1977, The dry deposition of sulphur dioxide to land and water surfaces, Proc. R. Soc. Lond. A. 354:245–268.

    Article  CAS  Google Scholar 

  • Gryning, S-E., van Ulden, A. P. and Larsen, S. E., 1983, Dispersion from a continous ground-level source investigated by a K-model, Quart. J. R. Met. Soc. 109, 355–364.

    Google Scholar 

  • Karlsson, E., Berglund, T. and Nordstrand, M., 1995, Deposition of sarin on snow, Proceedings of the Fifth International Symposium on Protection against Chemical and Biological Warfare Agents, Stockholm, Sweden, pp 409–415.

    Google Scholar 

  • Ley, A. J. and Thomson, D. J., 1983, A random walk model of dispersion in the diabatic surface layer, Quart. J. R. Met. Soc. 109:867–880.

    Article  Google Scholar 

  • Lin, C. C. and Reid, W. H., 1962, Turbulent flow, Handbuch der Physik, VIII/2, Springer, Berlin. pp. 438–523.

    Google Scholar 

  • Näslund, E. and Karlsson, E., 1995, Dry deposition in a model for stochastic particle dispersion, Air Pollution 95, Porto Carras, Greece (in press).

    Google Scholar 

  • Reif, F., 1965, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, pp. 269–273.

    Google Scholar 

  • Rodean, H. C., Lange, R. L. and Nasstrom, J. S., 1992, Comparison of two stochastic models of scalar diffusion in turbulent flow, Tenth Symposium on Turbulence and Diffusion, Portland, Oregon, pp 106–109.

    Google Scholar 

  • Thomson, D. J., 1987, Criteria for the selection of stochastic models of particle trajectories in turbulent flows, J. Fluid Mech. 180:529–556.

    Article  CAS  Google Scholar 

  • van Ulden, A. P., 1978, Simple estimates for vertical diffusion from sources near the ground, Atmos. Environ. 12:2125–2129.

    Article  Google Scholar 

  • Wilson, J.D., Thurtell, G.W. and Kidd, G.E., 1981, Numerical simulation of particle trajectories in inhomogeneous turbulence II: Systems with variable turbulence velocity scale, Boundary-Layer Meteorol. 21:423–441.

    Article  Google Scholar 

  • Wilson, J. D., Ferrandino, F. J. and Thurtell, G. W., 1989, A relationship between deposition velocity and trajectory reflection probability for use in stochastic lagrangian dispersion models, Agricultural and Forest Meteorol. 47:139–154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karlsson, E., Näslund, E., Gryning, SE. (1996). Comparison between Experimental Data and a Langevin Particle Dispersion Model Including Dry Deposition. In: Gryning, SE., Schiermeier, F.A. (eds) Air Pollution Modeling and Its Application XI. NATO · Challenges of Modern Society, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5841-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5841-5_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7678-1

  • Online ISBN: 978-1-4615-5841-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics