Skip to main content

Collective Excitations in the Optical Spectroscopy of Magnetic Insulators

  • Chapter
Spectroscopy and Dynamics of Collective Excitations in Solids

Part of the book series: NATO ASI Series ((NSSB,volume 356))

Abstract

The concept of collective excitations is essential to the understanding of the optical spectra of magnetic insulators. In particular magnons and Frenkel excitons play a major role in the absorption structure near the electronic origin of d-d absorption in transition metal ion compounds or of f-f absorption of rare-earth materials. Both pure exciton and exciton-magnon transitions are observed below the magnetic ordering temperature. These provide information on exciton dispersion and on exciton-magnon interactions. Two principal examples are used to illustrate these concepts: the antiferromagnets MnF2 and Cr2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Loudon, Adv. Phys. 17, 243 (1968).

    Article  CAS  Google Scholar 

  2. Y. Tanabe and K. Aoyagi, in Excitons, E. I. Rashba and M. D. Sturge, eds. (North Holland, 1987), p. 603.

    Google Scholar 

  3. Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 753 (1954); Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 766 (1954).

    Article  CAS  Google Scholar 

  4. Y. Tanabe and H. Kamimura, J. Phys. Soc. Japan 13, 394 (1958).

    Article  CAS  Google Scholar 

  5. J. S. Griffith, The Theory of Transition Metal Ions, (Cambridge University Press, Cambridge, England, 1961).

    Google Scholar 

  6. S. Sugano, Y. Tanabe and H. Kamimura, Multiplets of Transition Metal Ions in Crystals, (Academic Press, New York, 1970).

    Google Scholar 

  7. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Wiley Interscience, New York 1968.

    Google Scholar 

  8. G. H. Dieke and H. M. Crosswhite, Appl. Opt. 2, 681 (1963).

    Article  Google Scholar 

  9. W. T. Carnali, G. L. Goodman, K. Rajnak and R. S. Rana, J. Chem. Phys. 90, 3443 (1989).

    Article  Google Scholar 

  10. A. L. Schlawlow, D. L. Wood and A. M. Clogston, Phys. Rev. Lett. 3, 271 (1959).

    Article  Google Scholar 

  11. L. F. Mollenauer and A. L. Schawlow, Phys. Rev. 168, 309 (1968).

    Article  CAS  Google Scholar 

  12. J. C. Vial and R. Buisson, J. de Phys. 43, L339 (1982).

    Google Scholar 

  13. G. A. Prinz, Phys. Rev. 152, 474 (1966); G. A. Prinz and E. Cohen, Phys. Rev. 165, 335 (1968).

    Article  CAS  Google Scholar 

  14. F. Ramaz, J. C. Vial and R. M. Macfarlane, J. Lumin. 53, 244 (1992).

    Article  CAS  Google Scholar 

  15. B. DiBartolo ed. Energy Transfer Processes in Condensed Matter, NATO ASI Series 114 (Plenum Press, New York, 1984).

    Google Scholar 

  16. F. Auzel, C. R. Acad. Sci. (Paris) 202, 1016 (1966).

    Google Scholar 

  17. L. M. Henling and G. L. MacPherson, Phys. Rev. B16, 1889 (1977); R. B. Barthem, R. Buisson and R. L. Cone, J. Chem. Phys. 91, 627 (1989).

    Google Scholar 

  18. D. Eigler and E. K. Schweizer, Nature 344, 524 (1990).

    Article  CAS  Google Scholar 

  19. D. D. Sell, J. Appl. Phys. 39, 1030 (1968).

    Article  CAS  Google Scholar 

  20. G. A. Gehring and K. A. Gehring, Repts. Progr. Phys. 38, 1 (1975).

    Article  CAS  Google Scholar 

  21. R. L. Cone and R. S. Meltzer, in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North Holland, 1987), p. 481.

    Google Scholar 

  22. R. L. Greene, D. D. Sell, W. M. Yen, A. L. Schawlow and R. M. White, Phys. Rev. Lett. 15, 656 (1965); D. D. Sell, R. L. Greene and R. M. White, Phys. Rev., 158, 489 (1967).

    Article  CAS  Google Scholar 

  23. R. S. Meltzer, M. Lowe and D. S. McClure, Phys. Rev., 180, 561 (1969).

    Article  CAS  Google Scholar 

  24. R. S. Meltzer, M. Y. Chen, D. S. McClure and M. Lowe-Pariseau, Phys. Rev. Lett., 21, 913 (1968)

    Article  CAS  Google Scholar 

  25. J. W. Allen, R. M. Macfarlane and R. L. White, Phys. Rev., 179, 523 (1969).

    Article  CAS  Google Scholar 

  26. R. M. Macfarlane and J. W. Allen, Phys. Rev., B4, 3054 (1971).

    Google Scholar 

  27. J. B. Parkinson, J. Phys., C2, 2012 (1969).

    Google Scholar 

  28. J. P. van der Ziel, Phys. Rev. Lett., 18, 237 (1967).

    Article  Google Scholar 

  29. A. Okazaki, K. C. Turberfield and R. W. H. Stevenson, Phys. Lett., 8, 9 (1964).

    Article  CAS  Google Scholar 

  30. Y. Tanabe, T. Moriva and S. Sugano, Phys. Rev. Lett., 15, 102 (1965).

    Article  Google Scholar 

  31. Y. Tanabe, K. Gondaira and H. Murata, J. Phys. Soc. Japan 25, 1562 (1968); S. Freeman and J. J. Hopfield, Phys. Rev. Lett. 21, 910 (1968).

    Article  CAS  Google Scholar 

  32. R. L. Greene, D. D. Sell, R. S. Feigelson, G. F. Imbusch and H. J. Guggenheim, Phys. Rev., 171, 600 (1968).

    Article  CAS  Google Scholar 

  33. R. E. Dietz, A. Meixner, H. J. Guggenheim and A. Misetich, Phys. Rev. Lett., 21, 1067 (1968).

    Article  CAS  Google Scholar 

  34. J. F. Holzrichter, R. M. Macfarlane and A. L. Schawlow, Phys. Rev. Lett. 26, 652 (1971).

    Article  CAS  Google Scholar 

  35. G. J. Jongerden, A. F. M. Arts, J. I. Dijkhuis and H. W. de Wijn, Phys. Rev., B40, 9435 (1989).

    Google Scholar 

  36. M. L. J. Hollman, A. F. M. Arts, and H. W. de Wijn, Phys. Rev., B48, 3290 (1993).

    Google Scholar 

  37. R. M. Macfarlane and A. C. Luntz, Phys. Rev. Lett. 31, 832 (1973).

    Article  CAS  Google Scholar 

  38. B. N. Brockhouse, J. Chem. Phys., 21, 961 (1956).

    Article  Google Scholar 

  39. D. S. McClure, J. Chem. Phys., 38, 2289, (1963).

    Article  CAS  Google Scholar 

  40. R. S. Meltzer and H. W. Moos, Phys. Rev. B6, 264 (1972).

    Google Scholar 

  41. R. L. Cone and R. S. Meltzer, J. Chem. Phys. 62, 3573 (1975).

    Article  CAS  Google Scholar 

  42. R. S. Meltzer, Solid State Commun. 20, 553 (1976).

    Article  CAS  Google Scholar 

  43. P. Day, A. K. Gregson and D. H. Leech, Phys. Rev. Lett. 30, 19 (1972).

    Article  Google Scholar 

  44. T. Tsuboi, M. Chiba and Y. Ajiro, Phys. Rev. B32, 354 (1985).

    Google Scholar 

  45. T. Tsuboi, M. Chiba, Y. Ajiro, K. Iio and R. Laiho, J. Mag. & Mag. Matls. 54–57, 1395 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Macfarlane, R.M. (1997). Collective Excitations in the Optical Spectroscopy of Magnetic Insulators. In: Di Bartolo, B., Kyrkos, S. (eds) Spectroscopy and Dynamics of Collective Excitations in Solids. NATO ASI Series, vol 356. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5835-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5835-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7675-0

  • Online ISBN: 978-1-4615-5835-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics