Skip to main content

Lysosomal Nucleic Acid and Phosphate Metabolism and Related Metabolic Reactions

  • Chapter
Biology of the Lysosome

Part of the book series: Subcellular Biochemistry ((SCBI,volume 27))

Abstract

Lysosomes are a major intracellular site for the degradation of nucleic acids. Under conditions of nutritional deprivation, for example, approximately 65% of total rat liver cytoplasmic RNA is degraded per day, with 70–85% of this turnover occurring within the lysosomal compartment (Lardeux and Mortimore, 1987; Lardeux et al., 1987, 1988; Heydrick et al., 1991). Lysosomes contain an active repertoire of hydrolytic enzymes capable of completely degrading large amounts of nucleic acids to their basic constituents. In this chapter, the properties of the enzymes involved in lysosomal metabolism of nucleic acids and phosphates are described. The reader is also referred to earlier reviews by Barrett (1972) and Vaes (1973). In addition to the enzymes involved in lysosomal nucleic acid and phosphate metabolism, the role of lysosomes in the metabolism of cobalamin, folic acid polyglutamate, and coenzyme A are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcantara, O., Reddy, S. V., Roodman, G. D., and Boldt, D. H., 1994, Transcriptional regulation of the tartrate-resistant acid phosphatase (TRAP) gene by iron, Biochem. J. 298:421–425.

    CAS  Google Scholar 

  • Allen, S. H., Nuttleman, P. R., Ketcham, C. M., and Roberts, R. M., 1989, Purification and characterization of human bone tartrate-resistant acid phosphatase, J. Bone Miner. Res. 4:47–55.

    CAS  Google Scholar 

  • Andersson, G. N., Ek-Rylander, B., Hammarstrom, L. E., Lindskog, S., and Toverud, S. U., 1986, Im-munocytochemical localization of a tartrate-resistant and vanadate-sensitive acid nucleotide tri-and diphosphatase, J. Histochem. Cytochem. 34:293–298.

    CAS  Google Scholar 

  • Antanaitis, B. S., and Aisen, P., 1982, Detection of a g’ = 1.74 EPR signal in bovine spleen purple acid phosphatase, J. Biol. Chem. 257:5330–5332.

    CAS  Google Scholar 

  • Arsenis, C., and Touster, O., 1967, The partial resolution of acid phosphatase of rat liver lysosomes into a nucleotidase and a sugar phosphate phosphohydrolase, J. Biol. Chem. 242:3399–3401.

    CAS  Google Scholar 

  • Arsenis, C., and Touster, O., 1968, Purification and properties of an acid nucleotidase from rat liver lysosomes, J. Biol. Chem. 243:5702–5708.

    CAS  Google Scholar 

  • Arsenis, C., Gordon, J. S., and Touster, O., 1970, Degradation of nucleic acids by lysosomal extracts of rat liver and Ehrlich ascites tumor cells, J. Biol. Chem. 245:205–211.

    CAS  Google Scholar 

  • Barrett, A. J., 1972, Lysosomal enzymes in Lysosomes—A Laboratory Handbook (J. T. Dingle, ed.), pp. 46–135, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Barrueco, J. R., and Sirotnak, E M., 1991, Evidence for the facilitated transport of methotrexate poly-glutamates into lysosomes derived from S180 cells. Basic properties and specificity for poly glutamate chain length, J. Biol. Chem. 266:11731–11737.

    Google Scholar 

  • Barrueco, J. R., O’Leary, D. F., and Sirotnak, F. M., 1992a, Metabolic turnover of methotrexate poly-glutamates in lysosomes derived from S180 cells. Definition of a two-step process limited by mediated lysosomal permeation of poly glutamates and activating reduced sulfhydryl compounds, J. Biol. Chem. 267:15356–15361.

    CAS  Google Scholar 

  • Barrueco, J. R., O’Leary, D. F., and Sirotnak, F. M., 1992b, Facilitated transport of methotrexate poly-glutamates into lysosomes derived from S180 cells. Further characterization and evidence for a simple mobile carrier system with broad specificity for homo-or heteropeptides bearing a C-terminal glutamyl moiety, J. Biol. Chem. 267:19986–19991.

    CAS  Google Scholar 

  • Bensch, K., Gordon, G., and Miller, L., 1964, The fate of DNA-containing particles phagocytized by mammalian cells, J. Cell Biol. 21:105–114.

    CAS  Google Scholar 

  • Berg, G. G., 1960, Histochemical demonstration of acid trimetaphosphatase and tetrametaphosphatase, J. Histochem. Cytochem. 8:92–101.

    CAS  Google Scholar 

  • Berg, G. G., and Gordon, L. H., 1960, Presence of trimetaphosphatase in the intestinal mucosa and properties of the enzyme, J. Histochem. Cytochem. 8:85–91.

    CAS  Google Scholar 

  • Bernardi, G., 1968, Mechanism of action and structure of acid deoxyribonuclease, Adv. Enzymol. 31:1–49.

    CAS  Google Scholar 

  • Bernardi, A., and Bernardi, G., 1966, Studies on acid hydrolases. 3. Isolation and properties of spleen acid ribonuclease, Biochim. Biophys. Acta. 129:23–31.

    CAS  Google Scholar 

  • Bernardi, A., and Bernardi, G., 1968, Studies on acid hydrolases IV. Isolation and characterization of spleen exonuclease, Biochim. Biophys. Acta 155:360–370.

    CAS  Google Scholar 

  • Bernardi, G., and Griffe, M., 1964, Studies on acid deoxyribonuclease. II. Isolation and characterization of spleen-acid deoxyribonuclease, Biochemistry 3:1419–1426.

    CAS  Google Scholar 

  • Bevilacqua, M. A., Lord, D K., Cross, N. C., Whitaker, K. B., Moss, D. W., and Cox, T. M., 1991, Regulation and expression of type V (tartrate-resistant) acid phosphatase in human mononuclear phagocytes, Mol. Biol. Med. 8:135–140.

    CAS  Google Scholar 

  • Boulikas, T., 1992, Poly(ADP-ribose) synthesis and degradation in mammalian nuclei, Anal. Biochem. 203:252–258.

    CAS  Google Scholar 

  • Bowers, W. E., and de Duve, C., 1967, Lysosomes in lymphoid tissue II. Intracelluar distribution of acid hydrolases, J. Cell Biol. 32:339–348.

    CAS  Google Scholar 

  • Braun, M., Waheed, A., and von Figura, K., 1989, Lysosomal acid phosphatase is transported to lysosomes via the cell surface, EMBO J. 8:3633–3640.

    CAS  Google Scholar 

  • Bresciani, R., Peters, C., and von Figura, K., 1992, Lysosomal acid phosphatase is not involved in the dephosphorylation of mannose-6-phosphate containing lysosomal proteins, Eur. J. Cell Biol. 58:57–61.

    CAS  Google Scholar 

  • Brightwell, R., and Tappel, A. L., 1968a, Subcellular distributions and properties of rat liver phospho-diesterases, Arch. Biochem. Biophys. 124:325–332.

    CAS  Google Scholar 

  • Brightwell, R., and Tappel, A. L., 1968b, Lysosomal acid pyrophosphatase and acid phosphatase, Arch. Biochem. Biophys. 124:333–343.

    CAS  Google Scholar 

  • Catchside, D. G., and Holmes, B., 1947, The action of enzymes on chromosomes, Soc. Exp. Biol. Symp. 1:225–231.

    Google Scholar 

  • Cavallini, D., Dupre, S., Graziani, M. T., and Tinti, M. G., 1968, Identification of pantethinase in horse kidney extract, FEBS Lett. 1:119–121.

    CAS  Google Scholar 

  • Clark, S. A., Ambrose, W. W., Anderson, T. R., Terrell, R. S., and Toverud, S. U., 1989, Ultrastructural localization of tartrate-resistant, purple acid phosphatase in rat osteoclasts by histochemistry and immunocytochemistry, J. Bone Miner. Res. 4:399–405.

    CAS  Google Scholar 

  • Cordonnier, C., and Bernardi, G., 1968, A comparative study of acid deoxyribonucleases extracted from different tissues and species, Can. J. Biochem. 46:989–995.

    CAS  Google Scholar 

  • Cowling, R. T., and Birnboim, H. C., 1994, Incorporation of [32P]orthophosphate into inorganic polyphosphates by human granulocytes and other human cell types, J. Biol. Chem. 269:9480–9485.

    CAS  Google Scholar 

  • Cramer, C. L., and Davis, R. H., 1984, Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa, J. Biol. Chem. 59:5152–5157.

    Google Scholar 

  • Cramer, C. L., Vaughn, L. E., and Davis, R. H., 1980, Basic amino acids and inorganic polyphosphates in Neurospora crassa: Independent regulation of vacuolar pools, J. Bacteriol. 142:945–952.

    CAS  Google Scholar 

  • Cunningham, L., and Laskowski, M., 1953, Presence of two different desoxyribonucledepolymerases in veal kidney, Biochim. Biophys. Acta. 11:590–591.

    CAS  Google Scholar 

  • Davis, J. C., and Averill, B. A., 1982, Evidence for a spin-coupled binuclear iron unit at the active site of the purple acid phosphatase from bovine spleen, Proc. Natl. Acad. Sci. USA 79:4623–4627.

    CAS  Google Scholar 

  • de Duve, C., and Berthet, J., 1954, The use of differential centrifugation in the study of tissue enzymes, Int. Rev. Cytol. 3:225–275.

    Google Scholar 

  • de Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R., and Appelmans, F., 1955, Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue, Biochem. J. 60:604–619.

    Google Scholar 

  • Derechin, M., Ostrowski, W., Galka, M., and Barnard, E. A., 1971, Acid phosphomonoesterase of human prostate. Molecular weight, dissociation and chemical composition, Biochim. Biophys. Acta 250:143–154.

    CAS  Google Scholar 

  • DiPietro, D. L., and Zengerle, F. S., 1967, Separation and properties of three acid phosphatases from human placenta, J. Biol. Chem. 242:3391–3396.

    CAS  Google Scholar 

  • Doty, S. B., and Schofield, B. H., 1972, Electron microscopic localization of hydrolytic enzymes in os-teoclasts, Histochem. J. 4:245–258.

    CAS  Google Scholar 

  • Doty, S. B., Smith, C. E., Hand, A. R., and Oliver, C., 1977, Inorganic trimetaphosphatase as a histo-chemical marker for lysosomes in light and electron microscopy, J. Histochem. Cytochem. 25: 1381–1384.

    CAS  Google Scholar 

  • Drexler, H. G., and Gignac, S. M., 1994, Characterization and expression of tartrate-resistant acid phosphatase (TRAP) in hematopoietic cells, Leukemia 8:359–368.

    CAS  Google Scholar 

  • Dulaney, J. T., and Touster, O., 1972, Isolation of deoxyribonuclease II of rat liver lysosomes, J. Biol. Chem. 247:1424–1432.

    CAS  Google Scholar 

  • Dupre, S., Graziani, M. T., Rosie, M. A., Fabi, A., and Del Grosso, E., 1970, The enzymatic breakdown of pantethine to pantothenic acid and cystamine, Eur. J. Biochem. 16:571–578.

    CAS  Google Scholar 

  • Dupre, S., Rosei, M. A., Bellussi, L., Del Grosso, E., and Cavallini, D., 1973, The substrate specificity of pantethinase, Eur. J. Biochem. 40:103–107.

    CAS  Google Scholar 

  • Ek-Rylander, B., Bill, P., Norgard, M., Nilsson, S., and Andersson, G., 1991a, Cloning, sequence, and developmental expression of a type 5, tartrate-resistant, acid phosphatase of rat bone, J. Biol. Chem. 266:24684–24689.

    CAS  Google Scholar 

  • Ek-Rylander, B., Bergman, T., and Andersson, G., 1991b, Characterization of a tartrate-resistant acid phosphatase (ATPase) from rat bone: Hydrodyamnic properties and N-terminal amino acid sequence, J. Bone Miner. Res. 6:365–373.

    CAS  Google Scholar 

  • Ek-Rylander, B., Flores, M., Wendel, M., Heinegard, D., and Andersson, G., 1994, Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osetoclast adhesion in vitro, J. Biol. Chem. 269:14853–14856.

    CAS  Google Scholar 

  • Flores, M., Norgard, M., Heinegard, D., Reinholt, F. P., and Andersson, G., 1992, RGD-directed attachment of isolated rat osteoclasts to osteopontin, bone sialoprotein, and fibronectin, Exp. Cell Res. 201:526–530.

    CAS  Google Scholar 

  • Fox, I. H., and Kelley, W. N., 1978, The role of adenosine and 2′-deoxyadenosine in mammalian cells, Annu. Rev. Biochem. 47:655–686.

    CAS  Google Scholar 

  • Fukushima, O., Bekker, P. J., and Gay, C. V., 1991, Ultrastructural localization of tartrate-resistant acid phosphatase (purple acid phosphatase) activity in chicken cartilage and bone, Am. J. Anat. 191:228–236.

    CAS  Google Scholar 

  • Futai, M., Miyata, S., and Mizuno, D., 1969, Acid ribonucleases of lysosomal and soluble fractions from rat liver, J. Biol. Chem. 244:4951–4960.

    CAS  Google Scholar 

  • Gabel, N. W., and Thomas, V., 1971, Evidence for the occurrence and distribution of inorganic polyphosphates in vertebrate tissues, J. Neurochem. 18:1229–1242.

    CAS  Google Scholar 

  • Geier, C., von Figura, K., and Pohlmann, R., 1989, Structure of the human lysosomal acid phosphatase gene, Eur. J. Biochem. 183:611–616.

    CAS  Google Scholar 

  • Geier, C., Kreysing, J., Boettcher, H., Pohlmann, R., and von Figura, K., 1992, Localization of lysosomal acid phosphatase mRNA in mouse tissues, J. Histochem. Cytochem. 40: 1275–1282.

    CAS  Google Scholar 

  • Gieselmann, V., Hasilik, A., and von Figura, K., 1984, Tartrate-inhibitable acid phosphatase. Purification from placenta, characterization and subcellular distribution in fibroblasts, Hoppe-Seyler’s Z Physiol. Chem. 365:651–660.

    CAS  Google Scholar 

  • Gottschalk, S., Waheed, A., Schmidt, B., Laidler, P., and von Figura, K., 1989, Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl pro-teinase, EMBO J. 8:3215–3219.

    CAS  Google Scholar 

  • Griffin, J. B., and Penniall, R., 1966, Studies of phosphorus metabolism by isolated nuclei. VI. Labeled components of the acid-insoluble fraction, Arch. Biochem. Biophys. 114:67–75.

    CAS  Google Scholar 

  • Griffin, J. B., Davidian, N. M., and Penniall, R., 1965, Studies of phosphorus metabolism by isolated nuclei. VII. Identification of polyphosphate as a product, J. Biol. Chem. 240:4427–4434.

    CAS  Google Scholar 

  • Hayman, A. R., Dryden, A. J., Cambers, T. J., and Warburton, M. J., 1991, Tartrate-resistant acid phosphatase from human osteoclastomas is translated as a single polypeptide, Biochem. J. 277:631–634.

    CAS  Google Scholar 

  • Heinrikson, R. L., 1969, Purification and characterization of a low molecular weight acid phosphatase from bovine liver, J. Biol. Chem. 244:299–307.

    CAS  Google Scholar 

  • Heydrick, S. J., Lardeux, B. R., and Mortimore, G. E., 1991, Uptake and degradation of cytoplasmic RNA by hepatic lysosomes. Quantitative relationship to RNA turnover, J. Biol. Chem. 266:8790–8796.

    CAS  Google Scholar 

  • Hille, A., Klumperman, J., Geuze, H. J., Peters, C., Brodsky, F. M., and von Figura, K., 1992, Lysoso-mal acid phosphatase is internalized via clathrin-coated pits, Eur. J. Cell Biol. 59:106–115.

    CAS  Google Scholar 

  • Himeno, M., Fujita, H., Noguchi, Y., Kono, A., and Kato, K., 1989, Isolation and sequencing of a cDNA clone encoding acid phosphatase in rat liver lysosomes, 1989, Biochem. Biophys. Res. Commun. 162:1044–1053.

    CAS  Google Scholar 

  • Idriss, J.-M., and Jonas, A. J., 1991, Vitamin B12 transport by rat liver lysosomal membrane vesicles, J. Biol. Chem. 266:9438–9441.

    CAS  Google Scholar 

  • Igarashi, M., and Hollander, V. P., 1968, Acid phosphatase from rat liver, J. Biol. Chem. 243:6084–6089.

    CAS  Google Scholar 

  • Janckila, A. L., Latham, M. D., Lam, K. W., Li, C. Y., and Yam, L. T., 1992a, Heterogeneity of hairy cell tartrate-resistant acid phosphatase, Clin. Biochem. 25:437–443.

    CAS  Google Scholar 

  • Janckila, A. L., Woodford, T. A., Lam, K. W., Li, C. Y., and Yam, L. T., 1992b, Protein-tyrosine phosphatase activity of hairy cell tartrate-resistant acid phosphatase, Leukemia 6:199–203.

    CAS  Google Scholar 

  • Janckila, A. L., Cardwell, E. M., Yam, L. T., and Li, C. Y., 1995, Hairy cell identification by immuno-histochemistry of tartrate-resistant acid phosphatase, Blood 85:2839–2844.

    CAS  Google Scholar 

  • Ketcham, C. M., Roberts, R. M., Simmen, R. C., and Nick, H. S., 1989, Molecular cloning of the type 5, iron-containing, tartrate-resistant acid phosphatase from human placenta, J. Biol. Chem. 264:557–563.

    CAS  Google Scholar 

  • Kopf-Maier, P., 1990, The phosphorus content of lysosomes in hepatocytes and Kupffer cells. A study using electon-spectroscopic imaging. Acta Anat. 139:164–172.

    CAS  Google Scholar 

  • Kredich, N. M., and Hershfield, M. S., 1989, Immunodeficiency diseases caused by adenosine deam-inase deficiency and purine nucleoside phosphorylase deficiency, in The Metabolic Basis of Inherited Disease, 6th Ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 1045–1075, McGraw-Hill, New York.

    Google Scholar 

  • Kremer, M., Judd, J., Rifkin, B., Auszmann, J., and Oursler, M. J., 1995, Estrogen modulation of osteoclast lysosomal enzyme secretion, J. Cell. Biochem. 57:271–279.

    CAS  Google Scholar 

  • Kulaev, I. S., 1979, in The Biochemistry of Inorganic Polyphosphates, pp. 17–35, John Wiley and Sons, New York.

    Google Scholar 

  • Kulaev, I. S., and Vagabov, V. M., 1983, Polyphosphate metabolism in micro-organisms, Adv. Microb. Physiol. 24:84–171.

    Google Scholar 

  • Kumble, K. D., and Kornberg, A., 1995, Inorganic polyphosphate in mammalian cells and tissues, J. Biol. Chem. 270:5818–5822.

    CAS  Google Scholar 

  • Lacey, D. L., Erdmann, J. M., and Tan, H.-L., 1994, Interleukin 4 increases type 5 acid phosphatase mRNA expression in murine bone marrow macrophages, J. Cell. Biochem. 54:365–371.

    CAS  Google Scholar 

  • Lardeux, B. R., and Mortimore, G. E., 1987, Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy, J. Biol. Chem. 262:14514–14519.

    CAS  Google Scholar 

  • Lardeux, B. R., Heydrick, S. J., and Mortimore, G. E., 1987, RNA degradation in perfused rat liver as determined from the release of [14C]cytidine, J. Biol. Chem. 262:14507–14513.

    CAS  Google Scholar 

  • Lardeux, B. R., Heydrick, S. J., and Mortimore, G. E., 1988, Rates of rat liver RNA degradation in vivo as determined from cytidine release during brief cyclic perfusion in situ, Biochem. J. 252:363–367.

    CAS  Google Scholar 

  • Lehmann, L. E., Eberle, W., Krull, S., Prill, V., Schmidt, B., Sander, C., von Figura, K., and Peters, C., 1992, The internalization signal in the cytoplasmic tail of lysosomal acid phosphatase consists of the hexapeptide PGYRHV, EMBO J. 11:4391–4399.

    CAS  Google Scholar 

  • Li, C. Y., Yam, L. T., and Lam. K. W., 1970a, Acid phosphatase isoenzyme in human leukocytes in normal and pathologic conditions, J. Histochem. Cytochem. 18:473–481.

    CAS  Google Scholar 

  • Li, C. Y., Yam, L. T., and Lam, K. W., 1970b, Studies of acid phosphatase isoenzymes in human leukocytes: Demonstration of isoenzyme cell specificity, J. Histochem. Cytochem. 18:901–910.

    CAS  Google Scholar 

  • Liao, T.-H., 1985, The subunit structure and active site sequence of porcine spleen deoxyribonuclease, J. Biol. Chem. 260:10708–10713.

    CAS  Google Scholar 

  • Liao, T.-H., Liao, W.-C., Chang, H.-C., and Lu, K.-S., 1989, Deoxyribonuclease II purified from the isolated lysosomes of porcine spleen and from porcine liver homogenates. Comparison with deoxyribonuclease II purified from porcine spleen homogenates, Biochim. Biophys. Acta 1007:15–22.

    CAS  Google Scholar 

  • Lindley, E. R., and Pisoni, R. L., 1993, Demonstration of adenosine deaminase activity in human fi-broblast lysosomes, Biochem. J. 290:457–462.

    CAS  Google Scholar 

  • Ling, P., and Roberts, R. M., 1993, Uteroferrin and intracellular tartrate-resistant acid phosphatases are the products of the same gene, J. Biol. Chem. 268:6896–6902.

    CAS  Google Scholar 

  • Lord, D. K., Cross, N. C. P., Bevilacqua, M. A., Rider, S. H., Gorman, P. A., Groves, A. V., Moss, D. W., Sheer, D., and Cox, T. M., 1990, Type 5 acid phosphatase. Sequence, expression and chromosomal localization of a differentiation-associated protein of human macrophage, Eur. J. Biochem. 189:287–293.

    CAS  Google Scholar 

  • Lucther-Wasyl, E., and Ostrowski, W., 1974, Subunit structure of human prostatic acid phosphatase, Biochim. Biophys. Acta 365:349–359.

    Google Scholar 

  • Mason, R. W., and Massey, S. D., 1992, Surface activation of pro-cathepsin L., Biochem. Biophys. Res. Commun. 189:1659–1666.

    CAS  Google Scholar 

  • Maver, M. E., and Greco, A. E., 1949a, The hydrolysis of nucleoproteins by cathepsins from calf thymus, J. Biol. Chem. 181:853–860.

    CAS  Google Scholar 

  • Maver, M. E., and Greco, A. E., 1949b, The nuclease activities of cathepsin preparations from calf spleen and thymus, J. Biol. Chem. 181:861–870.

    CAS  Google Scholar 

  • Moonga, B. S., Pazianas, M., Alam, A. S., Shankar, V. S., Huang, C. L., and Zaidi, M., 1993, Stimulation of a Gs-like G protein in the osteoclast inhibits bone resorption but enhances tartrate-resistant acid phosphate secretion, Biochem. Biophys. Res. Commun. 190:496–501.

    CAS  Google Scholar 

  • Offenbacher, S., and Kline, E. S., 1984, Evidence for polyphosphate in phosphyorylated nonhistone nuclear proteins, Arch. Biochem. Biophys. 231:114–123.

    CAS  Google Scholar 

  • Oliver, C., 1980, Cytochemical localization of acid phosphatase and trimetaphosphatase activities in exocrine acinar cells, J. Histochem. Cytochem. 28:78–81.

    CAS  Google Scholar 

  • Orloff, S., Butler, J. D., Towne, D., Mukherjee, A. B., and Schulman, J. D., 1981, Pantetheinase activity and cysteamine content in cystinotic and normal fibroblasts and leukocytes, Pediatr. Res. 15:1063–1067.

    CAS  Google Scholar 

  • Oshima, R. G., and Price, P. A., 1973, Alkylation of an essential histidine residue in porcine spleen deoxyribonuclease, J. Biol. Chem. 248:7522–7526.

    CAS  Google Scholar 

  • Oshima, R. G., and Price, P. A., 1974, Effect of sulfate on the activity and the kinetics of deoxyri-bonucleic acid degradation by porcine spleen deoxyribonuclease, J. Biol. Chem. 249:4435–4438.

    CAS  Google Scholar 

  • Payer, A. F., Battle, C. L., and Peake, R. L., 1980, Use of osmium-ferrocyanide treatment for improved lysosomal acid trimetaphosphatase reaction and subcellular detail in thyroid follicular cells, J. Histochem. Cytochem. 28:183–186.

    CAS  Google Scholar 

  • Penniall, R., and Griffin, J. B., 1984, Studies of phosphorus metabolism by isolated nuclei. XII. Some fundamental properties of the incorporation of 32P into polyphosphate by rat liver nuclei, Biosci. Rep. 4:957–962.

    CAS  Google Scholar 

  • Peters, C., Braun, M., Weber, B., Wendland, M., Schmidt, B., Pohlmann, R., Waheed, A., and von Figura, K., 1990, Targeting of a lysosomal membrane protein: A tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes, EMBO J. 9:3497–3506.

    CAS  Google Scholar 

  • Petty, H. R., Hermann, W., and McConnell, H. M., 1985, Cytochemical study of macrophage lysosomal inorganic trimetaphosphatase and acid phosphatase, J. Ultrastruct. Res. 90:80–88.

    CAS  Google Scholar 

  • Pisoni, R. L., 1991, Characterization of a phosphate transport system in human fibroblast lysosomes, J. Biol. Chem. 266:979–985.

    CAS  Google Scholar 

  • Pisoni, R. L., and Lindley, E. R., 1992, Incorporation of [32P]orthophosphate into long chains of inorganic polyphosphate within lysosomes of human fibroblasts, J. Biol. Chem. 267:3626–3631.

    CAS  Google Scholar 

  • Pisoni, R. L., and Thoene, J. G., 1989, Detection and characterization of a nucleoside transport system in human fibroblast lysosomes, J. Biol. Chem. 264:4850–4856.

    CAS  Google Scholar 

  • Pisoni, R. L., Park, G. Y., Velilla, V. Q., and Thoene, J. G., 1995, Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes. Specificity for aminoethylthiol and aminoethylsulfide derivatives, J. Biol. Chem. 270:1179–1184.

    CAS  Google Scholar 

  • Pohlmann, R., Krentler, C., Schmidt, B., Schroder, W., Lorkowski, G., Culley, J., Mersmann, G., Geier, C., Waheed, A., Gottschalk, S., Grsechik, K.-H., Hasilik, A., and von Figura, K., 1988, Human lysosomal acid phosphatase: Cloning, expression and chromosomal assignment, EMBO J. 7:2343–2350.

    CAS  Google Scholar 

  • Prill, V., Lehmann, L., von Figura, K., and Peters, C., 1993, The cytoplasmic tail of lysosomal acid phosphatase contains overlapping but distinct signals for basolateral sorting and rapid internalization in polarized MDCK cells, EMBO J. 12:2181–2193.

    CAS  Google Scholar 

  • Ragab, M. H., Brightwell, R., and Tappel, A. L., 1968, Hydrolysis of flavin-adenine dinucleotide by rat liver lysosomes, Arch. Biochem. Biophys. 123:179–185.

    CAS  Google Scholar 

  • Rehkop, D. M., and Van Etten, R. L., 1975, Human liver acid phosphatases, Hoppe-Seyler’s Z Physiol. Chem. 356:1775–1782.

    CAS  Google Scholar 

  • Reinholt, F. P., Widholm, S. ML, Ek-Rylander, B., and Andersson, G., 1990, Ultrastractural localization of a tartrate-resistant acid ATPase in bone, J. Bone Miner. Res. 5:1055–1061.

    CAS  Google Scholar 

  • Robishaw, J. D., and Neely, J. R., 1985, Coenzyme A metabolism, Am. J. Physiol. 248:E1-E9.

    Google Scholar 

  • Rosenblatt, D. S., Cooper, B. A., Pottier, A., Lue-Shing, H., Matiaszuk, N., and Grauer, K., 1984, Altered vitamin B12 metabolism in fibroblasts from a patient with megaloblastic anemia and homocystinuria due to a new defect in methionine biosynthesis, J. Clin. Invest. 74:2149–2156.

    CAS  Google Scholar 

  • Rosenblatt, D. S., Hosack, A., Matiaszuk, N., Cooper, B., and Laframboise, R. L., 1985, Defect in vitamin B12 release from lysosomes: Newly described inborn eror of vitamin B12 metabolism, Science 228:1319–1321.

    CAS  Google Scholar 

  • Saha, B. K., 1982, Specificity of acid RNase from HeLa cell lysosomes, Nucleic Acids Res. 10:645–652.

    CAS  Google Scholar 

  • Saha, B. K., Graham, M. Y., and Schlessinger, D., 1979, Acid ribonuclease from HeLa cell lysosomes, J. Biol. Chem. 254:5951–5957.

    CAS  Google Scholar 

  • Saha, B. K., Sameshima, M., Sameshima, F., and Schlessinger, D., 1981, Lysosomal enzyme activities and RNA turnover rates in growing and nongrowing WI-38 and HeLa cells, In Vitro 17:816–824.

    CAS  Google Scholar 

  • Saini, M. S., and Van Etten, R. L., 1978a, Dimeric nature and amino acid compositions of homogeneous canine prostatic, human liver and rat liver acid phosphatase isoenzymes. Specificity and pH-dependence of the canine enzyme, Biochim. Biophys. Acta 526:468–478.

    CAS  Google Scholar 

  • Saini, M. S., and Van Etten, R. L., 1978b, A homogeneous isoenzyme of human liver acid phosphatase, Arch. Biochem. Biophys. 191:613–624.

    CAS  Google Scholar 

  • Schneider, D. L., 1983, ATP-dependent acidification of membrane vesicles isolated from purified rat liver lysosomes. Acidification activity requires phosphate, J. Biol. Chem. 258:1833–1838.

    CAS  Google Scholar 

  • Shin, H. J., and Mego, J. L., 1988, A rat liver lysosomal membrane flavin-adenine dinucleotide phos-phohydrolase: Purification and characterization, Arch. Biochem. Biophys. 267:95–103.

    CAS  Google Scholar 

  • Silverstein, S. C., and Dales, S., 1968, The penetration of reovirus RNA and initiation of its genetic function in L-strain fibroblasts, J. Cell Biol. 36:197–230.

    Google Scholar 

  • Skrede, S., 1973, The degradation of CoA: Subcellular localization and kinetic properties of CoA-and dephospho-CoA pyrophosphatase, Eur. J. Biochem. 38:401–407.

    CAS  Google Scholar 

  • Smith, C., Cano, M., and Potyriaj, J., 1978, The relationship between metabolic state and total CoA content of rat liver and heart, J. Nutr. 108:854–862.

    CAS  Google Scholar 

  • Smith, M. L., Greene, A. A., Potashnik, R., Mendoza, S. A., and Schneider, J. A., 1987, Lysosomal cystine transport. Effect of intralysosomal pH and membrane potential, J. Biol. Chem. 262:1244–1253.

    CAS  Google Scholar 

  • Sosa, M. A., Schmidt, B., von Figura, K., and Hille-Rehfeld, A., 1993, In vitro binding of plasma membrane-coated vesicle adaptors to the cytoplasmic domain of lysosomal acid phosphatase, J. Biol. Chem. 268:12537–12543.

    CAS  Google Scholar 

  • Tahiliani, A. G., 1989, Dependence of mitochondrial coenzyme A uptake on the membrane electrical gradient, J. Biol. Chem. 264:18426–18432.

    CAS  Google Scholar 

  • Tahiliani, A. G., and Neely, J. R., 1987, A transport system for coenzyme A in isolated rat heart mitochondria, J. Biol. Chem. 262:11607–11610.

    CAS  Google Scholar 

  • Tsubota, Y., Yamanaka, M., and Takagi, Y., 1974, Mode of action of acid deoxyribonucleases from human gastric mucosa and cervix uteri, J. Biol Chem. 249:3890–3894.

    CAS  Google Scholar 

  • Vaes, G., 1973, Digestion of nucleic acids and nucleotides, in Lysosomes and Storage Diseases (H. G. Hers, and F. Van Hoof, eds.), Academic Press, New York.

    Google Scholar 

  • Van Dyck, J. M., and Wattiaux, R., 1968, Distribution intracellulaire de l’exonuclease acide dans le foie de rat, Eur. J. Biochem. 7:15–20.

    Google Scholar 

  • Vincent, J. B., and Averill, B. A., 1990, An enzyme with a double identity: Purple acid phosphatase and tartrate-resistant acid phosphatase, FASEB J. 4:3009–3014.

    CAS  Google Scholar 

  • Waheed, A., and Van Etten, R. L., 1985, Biosynthesis and processing of lysosomal acid phosphatase in cultured human cells, Arch. Biochem. Biophys. 243:274–283.

    CAS  Google Scholar 

  • Waheed, A., Gottschalk, S., Hille, A., Krentler, C., Pohlmann, R., Braulke, T., Hauser, H., Geuze, H., and von Figura, K., 1988, Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells, EMBO J. 7:2351–2358.

    CAS  Google Scholar 

  • Williams, J. C., Chambers, J. P., and Liehr, J. G., 1984, Glutamyl ribose 5-phosphate storage disease. A hereditary defect in the degradation of poly (ADP-ribosylated) proteins, J. Biol. Chem. 259:1037–1042.

    CAS  Google Scholar 

  • Yam, L. T., Li, C. Y., and Lam, K. W., 1971, Tartrate-resistant acid phosphatase isoenzyme in the reticulum cells of leukemic reticuloendotheliosis, N. Engl. J. Med. 284:357–360.

    CAS  Google Scholar 

  • Yeh, L. C., Lee, A. J., Lee, N. E., Lam, K. W. and Lee, C., 1987, Molecular cloning of cDNA for human prostatic acid phosphatase, Gene 60:191–196.

    CAS  Google Scholar 

  • Youngdahl-Turner, P., Rosenberg, L. E., and Allen, R. H., 1978, Binding and uptake of transcobalamin II by human fibroblasts, J. Clin. Invest. 61:133–141.

    CAS  Google Scholar 

  • Zhang, S. X., Okada, K. T., Garcia del Saz, E., and Seguchi, H., 1991, Ultracytochemical localization of acid phosphatase and trimetaphosphatase activities in the transitional epithelium of the rat urinary bladder, J. Submicrosc. Cytol. Pathol. 23:431–437.

    CAS  Google Scholar 

  • Zheng, M. H., McCaughan, H. B., Papadimitriou, J. M., Nicholson, G. C., and Wood, D. J., 1994, Tartrate resistant acid phosphatase activity in rat cultured osteoclasts is inhibited by a carboxyl terminal peptide (osetostatin) from parathyroid hormone-related protein, J. Cell Biochem. 54:145–153.

    CAS  Google Scholar 

  • Zheng, M. H., Lau, T. T., Prince, R., Criddle, A., Wysocki, S., Beilharz, M., Papadimitriou, J. M., and Wood, D. J., 1995, 17-Beta-estradiol suppresses gene expression of tartrate-resistant acid phosphatase and carbonic anhydrase II in ovariectomized rats, Calcif. Tissue Int. 56:166–169.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pisoni, R.L. (1996). Lysosomal Nucleic Acid and Phosphate Metabolism and Related Metabolic Reactions. In: Lloyd, J.B., Mason, R.W. (eds) Biology of the Lysosome. Subcellular Biochemistry, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5833-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5833-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7674-3

  • Online ISBN: 978-1-4615-5833-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics