Skip to main content

Lysosomal Metabolism of Lipids

  • Chapter
Biology of the Lysosome

Part of the book series: Subcellular Biochemistry ((SCBI,volume 27))

Abstract

Mammalian cells are very active in lipid metabolism, constantly acquiring new lipid by synthesis and by endocytosis of exogenous materials, and constantly degrading lipid by a combination of lipolytic and oxidative processes. The lysosome is a critical component in the degradative arm of this system and is primarily responsible for the lipolysis of both exogenous lipids (e.g., the lipid acquired by endocytosis of lipoproteins) and endogenous membrane lipids that are delivered to this organelle as a result of endocytosis and lysosome biogenesis. The lipolysis of complex lipids (e.g., glycerophospholipids, cholesteryl esters, etc.) in lysosomes yields relatively simple lipid and nonlipid products, which subsequently diffuse or undergo transport through the lysosomal limiting membrane to become available for oxidation, efflux, or biosynthetic reutilization elsewhere in the cell. The degradation of lipids within lysosomes is catalyzed by several specific lipases, which have acidic pH optima and which are concentrated in this organelle. There are several lysosomal storage diseases attributable to the inherited absence of individual acid lipases. In addition, lysosomes play a central role in the turnover of plasma lipoproteins and thereby participate in processes that paradoxically tend to prevent and promote atherosclerosis, a major health problem in the developed Western nations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, S. J., Glick, J. M., Phillips, M. C., and Rothblat, G. H., 1984, Lipid composition and physical state effects on cellular cholesteryl ester clearance. J. Biol. Chem. 259:13844–13850.

    CAS  Google Scholar 

  • Ahmad, T. Y., Beaudet, A. L., Sparrow, J. T., and Morrisett, J. D., 1986, Human lysosomal sphingomyelinase: Substrate efficacy of apolipoproteinJsphingomyelin complexes, Biochemistry 25:4415–4420.

    CAS  Google Scholar 

  • Aikawa, K., Furuchi, T., Fujimoto, Y., Arai, H., and Inoue, K., 1994, Structure-specific inhibition of lysosomal cholesterol transport in macrophages by various steroids, Biochim. Biophys. Acta 1213:127–134.

    CAS  Google Scholar 

  • Al, B. J., Tiffany, C. W., Gomes de Mesquita, D. S., Moser, H. W., Tager, J. M., and Schram, A. W., 1989, Properties of acid ceramidase from human spleen, Biochim. Biophys. Acta 1004:245–251.

    CAS  Google Scholar 

  • Alpert, A. J., and Beaudet, A. L., 1981, Apolipoprotein C-III-1 activates lysosomal sphingomyelinase in vitro, J. Clin. Invest. 68:1592–1596.

    CAS  Google Scholar 

  • Ameis, D., Brockmann, G., Knoblich, R., Merkel, M., Ostlund Jr., R. E., Yang, J. W., Coates, P. M., Cortner, J. A., Feinman, S. V., and Greten, H., 1995, A 5′ splice-region mutation and a dinucleotide deletion in the lysosomal acid lipase gene in two patients with cholesteryl ester storage disease, J. Lipid Res. 36:241–250.

    CAS  Google Scholar 

  • Amidon, B., Schmitt, J. D., Thuren, T., King, L., and Waite, M., 1995, Biosynthetic conversion of phosphatidylglycerol to sn-l:sn-l′ bis(monoacylglycerol)phosphate in a macrophage-like cell line, Biochemistry 34:5554–5560.

    CAS  Google Scholar 

  • Anderson, R. A., and Sando, G. N., 1991, Cloning and expression of cDNA encoding human lysosomal acid lipaseJcholesteryl ester hydrolase. Similarities to gastric and lingual lipases, J. Biol. Chem. 266:22479–22484.

    CAS  Google Scholar 

  • Anderson, R. A., Byrum, R. S., Coates, P. M., and Sando, G. N., 1994, Mutations at the lysosomal acid cholesterylester hydrolase gene locus in Wolman disease, Proc. Natl. Acad. Sci. USA 91:2718–2722.

    CAS  Google Scholar 

  • Anderson, R. G., Brown, M. S., and Goldstein, J. L., 1977, Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts, Cell 10:351–364.

    CAS  Google Scholar 

  • Andrieu, N., Salvayre, R., and Levade, T., 1994, Evidence against involvement of the acid lysosomal sphingomyelinase in the tumour-necrosis-factor-and interleukin-1-induced sphingomyelin cycle and cell proliferation in human fibroblasts, Biochem. J. 303:341–345.

    CAS  Google Scholar 

  • Antonarakis, S. E., Valle, D., Moser, H. W., Moser, A., Qualman, S. J., and Zinkham, W. H., 1984, Phenotypic variability in siblings with Farber disease, J. Pediatr. 104:406–409.

    CAS  Google Scholar 

  • Assmann, G., and Seedorf, U., 1995, Acid lipase deficiency: Wolman disease and cholesteryl ester storage disease, in The Metabolic and Molecular Bases of Inherited Disease, 7th Ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 2563–2587, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Assmann, G., Fredrickson, D. S., Sloan, H. R., Fales, H. M., and Highet, R. I., 1975, Accumulation of oxygenated steryl esters in Wolman’s disease, Biochemistry 34:7955–7965.

    Google Scholar 

  • Aviram, M., 1993, Modified forms of low density lipoprotein and atherosclerosis, Atherosclerosis 98:1–9.

    CAS  Google Scholar 

  • Ball, R. Y., Stowers, E. C., Burton, J. H., Gary, N. R. B., Skepper, J. N., and Mitchinson, M. J., 1995, Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma, Atherosclerosis 114:45–54.

    CAS  Google Scholar 

  • Bangham, A. D., and Dawson, R. M. C., 1959, The relation between the activity of a lecithinase and the electrophoretic charge of the substrate, Biochem. J. 72:486–492.

    CAS  Google Scholar 

  • Bangham, A. D., Standish, M. M., and Watkins, J. C., 1965, Diffusion of univalent ions across lamellae of swollen phospholipids, J. Mol. Biol. 13:238–252.

    CAS  Google Scholar 

  • Beckman, J. K., Owens, K., and Weglicki, W. B., 1981, Endogenous lipolytic activities during autolysis of highly enriched hepatic lysosomes, Lipids 16:796–799.

    CAS  Google Scholar 

  • Bergstrom, B., and Brockman, H. L., 1984, Lipases, Elsevier, New York.

    Google Scholar 

  • Blanchette-Mackie, E. J., Dwyer. N. K., Amende, L. M., Kruth, H. S., Butler, J. D., Sokol, J., Comly, M. E., Vanier, M. T., August, J. T., Brady, R. O., and Pentchev, P. G., 1988, Type-C Niemann-Pick disease: Low density lipoprotein uptake is associated with premature cholesterol accumulation in the Golgi complex and excessive cholesterol storage in lysosomes, Proc. Natl. Acad. Sci. USA 85:8022–8026.

    CAS  Google Scholar 

  • Bleistein, J., Heidrich, H. G., and Debuch, H., 1980, The phospholipids of liver lysosomes from untreated rats, Hoppe-Seyler’s Z. Physiol. Chem. 361:595–597.

    CAS  Google Scholar 

  • Bradova, V., Smid, F., Ulrich-Bott, B., Roggendorf, W., Paton, B. C., and Harzer, K., 1993, Prosaposin deficiency: Further characterization of the sphingolipid activator protein-deficient sibs, Hum. Genet. 92:143–152.

    CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1983, Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis, Annu. Rev. Biochem. 52:223–261.

    CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1986, A receptor-mediated pathway for cholesterol homeostasis, Science 232:34–47.

    CAS  Google Scholar 

  • Brown, M. S., Goldstein, J. L., Krieger, M., Ho, Y. K., and Anderson, R. G. W., 1979, Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins, J. Cell Biol. 82:597–613.

    CAS  Google Scholar 

  • Brown, M. S., Basu, S. K., Falck, J. R., Ho, Y. K., and Goldstein, J. L., 1980a, The scavenger cell pathway for lipoprotein degradation: Specificity of the binding site that mediates the uptake of negatively-charges LDL by macrophages, J. Supramol. Struct. 13:67–81.

    CAS  Google Scholar 

  • Brown, M. S., Ho, Y. K., and Goldstein, J. L., 1980b, The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters, J. Biol Chem. 255:9344–9352.

    CAS  Google Scholar 

  • Burner, R. E., and Brecher, P., 1983, Hydrolysis of triolein in phospholipid vesicles and microemulsions by a purified rat liver acid lipase, J. Biol Chem. 258:12043–12050.

    Google Scholar 

  • Burton, B. K., Emery, D., and Mueller, H. W., 1980, Lysosomal acid lipase in cultivated fibroblasts: Characterization of enzyme activity in normal and enzymatically efficient cell lines, Clin. Chim. Acta 101:25–32.

    CAS  Google Scholar 

  • Butler, J. O., Blanchette-Mackie, J., Goldin, E., O’Neill, R. R., Carstea, G., Roff, C. F., Patterson, M. C., Patel, S., Comly, M. E., Cooney, A., Vanier, M. T., Brady, R. O., and Pentchev, P. G., 1992, Progesterone blocks cholesterol translocation from lysosomes, J. Biol Chem. 267:23797–23805.

    CAS  Google Scholar 

  • Callahan, J. W., Jones, C. S., Davidson, D. J., and Shankaran, P., 1983, The active site of lysosomal sphingomyelinase: Evidence for the involvement of hydrophobic and ionic groups, J. Neurosci. Res. 10:151–163.

    CAS  Google Scholar 

  • Chen, W. W., and Decker, G. L., 1982, Abnormalities of lysosomes in human diploid fibroblasts from patients with Farber’s disease, Biochim. Biophys. Acta 718:185–192.

    CAS  Google Scholar 

  • Chen, W. W., and Moser, H. W., 1979, Purification of acid ceramidase from human placenta, FEBS Proc. 38:405.

    Google Scholar 

  • Chen, W. W., Moser, A. B., and Moser, H. W., 1981, Role of lysosomal acid ceramidase in the metabolism of ceramide in human skin fibroblasts, Arch. Biochem. Biophys. 208:444–455.

    CAS  Google Scholar 

  • Coates, P. M., and Cortner, J. A., Hoffman, G. M., and Brown, S. A., 1979, Acid lipase activity of human lymphocytes, Biochim. Biophys. Acta 572:225–230.

    CAS  Google Scholar 

  • Coates, P. M., Langer, T., and Cortner, J. A., 1986, Genetic variation of human mononuclear leukocyte lysosomal acid lipase activity, Atherosclerosis 62:11–20.

    CAS  Google Scholar 

  • Coxey, R. A., Pentchev, P. G., Campbell, G., and Blanchette-Mackie, E. J., 1993, Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-Pick type C fibroblasts incubated with LDL: A cytochemical freeze-fracture study, J. Lipid Res. 34:1165–1176.

    CAS  Google Scholar 

  • Dahl, N. K., Daunais, M. A., and Liscum, L., 1994, A second complementation class of cholesterol transport mutants with a variant Niemann-Pick type C phenotype, J. Lipid Res. 35:1839–1849.

    CAS  Google Scholar 

  • de Duve, C., 1974, The participation of lysosomes in the transformation of smooth muscle cells to foamy cells in the aorta of cholesterol-fed rabbits, Arterioscler. Thromb. 12:1235–1244.

    Google Scholar 

  • Deems, R. A., Eaton, B. R., and Dennis, E. A., 1975, Kinetic analysis of phospholipase A2 activity toward mixed micelles and its implications for the study of lipolytic enzymes, J. Biol. Chem. 250:9013–9020.

    CAS  Google Scholar 

  • Dejager, S., Mietus-Snyder, M., and Pitas, R. E., 1993, Oxidized low density lipoproteins bind to the scavenger receptor expressed by rabbit smooth muscle cells and macrophages, Arterioscler. Thromb. 13:371–378.

    CAS  Google Scholar 

  • DeLamatre, J. G., Carter, R. M., and Hornick, C., 1993, Evidence that a neutral cholesteryl ester hydrolase is responsible for the extralysosomal hydrolysis of high-density lipoprotein cholesteryl ester in rat hepatoma cells (Fu5AH), J. Cell. Physiol. 157:164–168.

    CAS  Google Scholar 

  • Dennis, E. A., 1983, Phospholipases, in The Enzymes, Vol. XVI (P. Boyer, ed.), pp. 307–353. New York, Academic Press.

    Google Scholar 

  • Deykin, D., and Goodman, D. S., 1962, The hydrolysis of long-chain fatty acid esters of cholesterol with rat liver enzymes, J. Biol. Chem. 237:3649–3656.

    CAS  Google Scholar 

  • Dinur, T., Schuchman, E. H., Fibach, E., Dagan, A., Suchy, M., Desnick, R. J., and Gatt, S., 1992, Toward gene therapy for Niemann-Pick disease (NPD): Separation of retrovirally corrected and non-corrected NPD fibroblasts using a novel fluorescent sphingomyelin, Hum. Gene Ther 3:633–639.

    CAS  Google Scholar 

  • Eisen, D., Bartolf, M., and Franson, R. C., 1984, Inhibition of lysosomal phospholipase C and Ain rabbit alveolar macrophages, polymorphonuclear leukocytes and rat liver by sodium bisulfite, Biochim. Biophys. Acta 793:10–17.

    CAS  Google Scholar 

  • Erickson, S. K., Lear, S. R., and McCreery, M. J., 1994, Functional sizes of hepatic enzymes of cholesteryl ester metabolism determined by radiation inactivation, J. Lipid Res. 35:763–769.

    CAS  Google Scholar 

  • Falcone, D. J., Mated, N., Shio, H., Minick, C. R., and Fowler, D., 1984, Lipoprotein-heparin-fibronectin-denatured collagen complexes enhance cholesteryl ester accumulation in macrophages, J. Cell Biol. 99:1266–1274.

    CAS  Google Scholar 

  • Farber, S., Cohen, J., and Uzman, L. L., 1957, Lipogranulomatosis: A new lipo-glyco-protein “storage” disease, J. Mt. Sinai Hospital 24:816–837.

    CAS  Google Scholar 

  • Fenson, A. H., Benson, P. F., Neville, B. R., Moser, H. W., Moser, A. E., and Dulaney, J. T., 1979, Prenatal diagnosis of Farber’s disease, Lancet 2:990–992.

    Google Scholar 

  • Fowler, S. D., and Brown, W. J., 1984, Lysosomal acid lipase, in Lipases, (B. Bergstrom and H. L. Brockman, eds.), pp. 329–364. Elsevier Science Publishing Company, Inc., New York.

    Google Scholar 

  • Fowler, S., and de Duve, C., 1969, Digestive activity of lysosomes. III. The digestion of lipids by extracts of rat liver lysosomes, J. Biol. Chem. 144:471–481.

    Google Scholar 

  • Franson, R. C., and Waite, M., 1973, Lysosomal phospholipases A1 and A2 of normal and Bacillus Calmettle Guerin-induced alveolar macrophages, J. Cell Biol. 56:621–627.

    CAS  Google Scholar 

  • Franson, R., Waite, M., and La Via, M., 1971, Identification of phospholipase A1 and phospholipase A2 in the soluble fraction of rat liver lysosomes, Biochemistry 10:1942–1946.

    CAS  Google Scholar 

  • Franson, R., Waite, M., and Weglicki, W. B., 1972, Phospholipase A activity of lysosomes of rat myocardial tissue, Biochemistry 11:472–476.

    CAS  Google Scholar 

  • Freeman, S. J., Davidson, D. J., and Callahan, J. W., 1984, Solid-phase assay for the detection of lowabundance enzymes, and antibodies to enzymes in immune reactions, using acid sphingomyelinase as a model, Anal. Biochem. 141:248–252.

    CAS  Google Scholar 

  • Gatt, S., 1963, Enzymic hydrolysis and synthesis of ceramides, J. BioL Chem. 238:PC3131–3133.

    CAS  Google Scholar 

  • Gatt, S., 1966, Enzymatic hydrolysis of sphingolipids. I. Hydrolysis and synthesis of ceramides by an enzyme from rat brain, J. Biol. Chem. 241:3724–3730.

    CAS  Google Scholar 

  • Gatt, S., Dinur, T., and Barenholz, Y., 1978, A spectrophotometric method for determination of sphingomyelinase, Biochim. Biophys. Acta 530:503–507.

    CAS  Google Scholar 

  • Gatt, S., Dinur, T., and Barenholz, Y., 1980, A fluorometric determination of sphingomyelinase by use of fluorescent derivatives of sphingomyelin, and its application to diagnosis of Niemann-Pick disease, Clin. Chem. 26: 93–96.

    CAS  Google Scholar 

  • Ghosh, P., and Chatterjee, S., 1987, Effects of gentamicin on sphingomyelinase activity in cultured human renal proximal tubular cells, J. Biol. Chem. 262:12550–12556.

    CAS  Google Scholar 

  • Gianturco, S. H., Lin, A. H.-Y., Hwang, S.-L. C., Young, J., Brown, S. A., Via, D. P., and Bradley, W. A., 1988, Distinct murine macrophage receptor pathway for human triglyceride-rich lipoproteins, J. Clin. Invest. 82:1633–1643.

    CAS  Google Scholar 

  • Glaumann, H., and Trump, B. F., 1975, Lysosomal degradation of cell organelles. III. Uptake and disappearance in Kupffer cells in intravenously injected isotope-labeled mitochondria and microsomes in vivo and in vitro, Lab. Invest. 33:262–272.

    Google Scholar 

  • Glick, J. M., Adelman, S. A., and Rothblat, G. H., 1987, Cholesteryl ester cycle in cultured hepatoma cells, Atherosclerosis 64:223–230.

    CAS  Google Scholar 

  • Glick, J. M., 1990, Intracellular cholesteryl ester hydrolysis and clearance, in Advances in Cholesterol Research (M. Esfahani and J. B. Swaney, eds.), pp. 167–197, Telford Press, Caldwell, New Jersey.

    Google Scholar 

  • Goldberg, D. I., and Khoo, J. C., 1988, Secretion of the lysosomal acid triacylglycerol hydrolase precursor by J774 macrophages, Biochim. Biophys. Acta 960:200–209.

    CAS  Google Scholar 

  • Goldstein, J. L., Dana, S. E., Faust, J. R., Beaudet, A. L., and Brown, M. S., 1975, Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein, J. BioL Chem. 250: 8487–8495.

    CAS  Google Scholar 

  • Goldstein, J. L., Ho, Y. K., Basu, S. K., and Brown, M. S., 1979, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein producing massive cholesterol deposition, Proc. Natl. Acad. Sei. USA 76:333–337.

    CAS  Google Scholar 

  • Goldstein, J. L., Kita, T., and Brown, M. S., 1983, Defective lipoprotein receptors and atherosclerosis, N. Engl. J. Med. 309:288–296.

    CAS  Google Scholar 

  • Graber, B., Salvayre, R., and Lavade, T., 1994, Accurate differentiation of neuronopathic and nonneu-ronopathic forms of Niemann-Pick disease by evaluation of the effective residual lysosomal sphingomyelinase activity in intact cells, J. Neurochem. 63:1060–1068.

    CAS  Google Scholar 

  • Hagemenas, F. C., Manaugh, L. C., Illingworth, D. R., Sundberg, E. E., and Yatsu, F. M., 1984, Cholesteryl ester hydrolase activity in mononuclear cell from patients with type II hypercholesterolemia, Atherosclerosis 50:335–344.

    CAS  Google Scholar 

  • Haley, N. J., Fowler, S., and de Duve, C., 1980, Lysosomal acid cholesteryl esterase activity in normal and lipid-laden aortic cells, J. Lipid Res. 21:961–969.

    CAS  Google Scholar 

  • Hannun, Y A., 1994, The sphingomyelin cycle and the second messenger function of ceramide, J. Biol. Chem. 269:3125–3128.

    CAS  Google Scholar 

  • Harrison, E. H., 1993, Enzymes catalyzing the hydrolysis of retinyl esters, Biochim. Biophys. Acta 1170:99–108.

    CAS  Google Scholar 

  • Harrison, E. H., Bernard, D. W., Scholm, P., Quinn, D. M., Rothblat, G. H., and Glick, J. M., 1990, Inhibitors of neutral cholesteryl ester hydrolase, J. Lipid Res. 31:2187–2193.

    CAS  Google Scholar 

  • Harrison, E. H., Gad, M. Z., and Ross, A. C., 1995, Hepatic uptake and metabolism of chylomicron retinyl esters: Probable role of plasma membraneJendosomal retinyl ester hydrolase J. Lipid Res. 36:1498–1506.

    CAS  Google Scholar 

  • Harzer, K., Paton, B. C., Poulos, A., Kustermann-Kuhn, B., Roggendorf, W., Grisar, T., and Popp, M., 1989, Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: Biochemical signs of combined sphingolipidoses, Eur. J. Pediatr. 149:31–39.

    CAS  Google Scholar 

  • Hassler, D. F., and Bell, R. M., 1993, Ceramidases: Enzymology and metabolic roles, in Advances in Lipid Research, Vol. 26 (R. M., Bell, J. A. H. Merrill, and Y. A. Hannun, eds.), pp. 49–57, Academic Press, San Diego, California.

    Google Scholar 

  • Hayashi, H., Niinobe, S., Matsumoto, Y., and Suga, T., 1981, Effects of Triton WR-1339 on lipoprotein lipolytic activity and lipid content of rat liver lysosomes, J. Biochem. 89:573–579.

    CAS  Google Scholar 

  • Heller, M., and Shapiro, B., 1966, Enzymic hydrolysis of sphingomyelin by rat liver, Biochem. J. 98:763–769.

    CAS  Google Scholar 

  • Henell, F., Ericsson, J. L. E., and Glaumann, H., 1983, Degradation of phagocytosed lysosomes by Kupffer cell lysosomes, Lab. Invest. 48:556–564.

    CAS  Google Scholar 

  • Hilaire, N., Negre-Salvayre, A., and Salvayre, R., 1993, Cytoplasmic triacylglycerols and cholesteryl esters are degraded in two separate catabolic pools in cultured human fibroblasts, FEBS Lett. 328:230–234.

    CAS  Google Scholar 

  • Hoeg, J. M., Demosky, S. J., Pescovitz, O. H., and Brewer, H. B., 1984, Cholesteryl ester storage disease and Wolman’s disease: Phenotypic variants of lysosomal acid cholesteryl ester hydrolyase deficiency, Am. J. Hum. Genet. 36:1190–1203.

    CAS  Google Scholar 

  • Holtzman, E., 1989, Lysosomes, Plenum Press, New York.

    Google Scholar 

  • Hornick, C. A., Thouron, C., DeLamatre, J. G., and Huang, J., 1992, Triacylglycerol hydrolysis in isolated endosomes, J. Biol. Chem. 267:3396–3401.

    CAS  Google Scholar 

  • Hostetler, K. Y., and Hall, L. B., 1980, Phospholipase C activity of rat tissues, Biochem. Biophys. Res. Commun. 96:338–393.

    Google Scholar 

  • Hostetler, K. Y., and Hall, L. B., 1982, Inhibition of kidney lysosomal phospholipases A and C by aminoglycoside antibiotics: Possible mechanism of aminoglycoside toxicity, Proc. Natl. Acad. Sci. USA 79:1663–1667.

    CAS  Google Scholar 

  • Hostetler, K. Y., Yazaki, P. J., and van den Bosch, H., 1982, Purification of lysosomal phospholipase A, J. Biol. Chem. 257:13367–13373.

    CAS  Google Scholar 

  • Hostetler, K. Y., Reasor, M., and Yazaki, P. J., 1985, Chloroquine-induced phospholipid fatty liver: Measurement of drug and lipid concentrations in rat liver lysosomes, J. Biol. Chem. 260:215–219.

    CAS  Google Scholar 

  • Hostetler, K. Y., Huterer, S. J., and Wherrett, J. R., 1992, Biosynthesis of bis(monoacylglycero)phosphate in liver and macrophage lysosomes, in Methods in Enzymology, Vol. 209 (E. A. Dennis and D. E. Vance, eds.), pp. 104–110, Academic Press, Inc., San Diego, California.

    Google Scholar 

  • Hurwitz, R., Ferlinz, K., and Sandhoff, K., 1994, The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblast, Biol. Chem. HoppeSeyler 375:447–450.

    CAS  Google Scholar 

  • Huterer, S. J., and Wherrett, J. R., 1989, Formation of bis(monoacylglycero)phosphate by a macrophage transacylase, Biochim. Biophys. Acta 1001:68–75.

    CAS  Google Scholar 

  • Huterer, S. J., Hostetler, K. Y., Gardner, M. F., and Wherrett, J. R., 1993, Lysosomal phosphatidylcholine:bis(monoacylglycero)phosphate acyltransferase:Specificity for the sn-1 fatty acid of the donor and co-purification with phospholipase A1, Biochim. Biophys. Acta 1167:204–210.

    CAS  Google Scholar 

  • Imanaka, T., Amanuma-Muto, K., Ohkuma, S., and Jakano, T., 1984, Characterization of lysosomal acid lipase purified from rabbit liver, J. Biochem. 96:1089–1101.

    CAS  Google Scholar 

  • Irvine, R. F., Hemington, N., and Dawson, R. M. C., 1978, The hydrolysis of phosphatidylinositol by lysosomal enzymes of rat liver and brain, Biochem. J. 176:475–484.

    CAS  Google Scholar 

  • Ishikawa, Y., Nishide, T., Sasaki, N., Shirai, K., Saito, Y., and Yoshida, S., 1988, Hydrolysis of low-density lipoprotein phospholipids in arterial smooth muscle cells, Biochim. Biophys. Acta 961:170–176.

    CAS  Google Scholar 

  • Ishikawa, Y., Nishide, T., Sasaki, N., Shirai, K., Saito, Y., and Yoshida, S., 1989, Effects of chloroquine on the metabolism of phosphatidylcholine associated with low density lipoprotein in arterial smooth muscle cells, Atherosclerosis 80:1–7.

    CAS  Google Scholar 

  • Jerome, W. G., and Lewis, J. C., 1985, Early atherogenesis in White Carneau pigeons. II. ultrastructural and cytochemical observations, Am. J. Pathol. 119:210–222.

    CAS  Google Scholar 

  • Jerome, W. G., and Lewis, J. C., 1987, Early atherogenesis in the white carneau pigeon III. Lipid accumulation in nascent foam cells, Am. J. Pathol. 128:253–264.

    CAS  Google Scholar 

  • Jobb, E. A., and Callahan, J. W., 1989, Biosynthesis of sphingomyelinase in normal and Niemann-Pick fibroblasts, Biochem. Cell Biol. 67:801–807.

    CAS  Google Scholar 

  • Johnson, W. J., Chacko, G. C., Phillips, M. C., and Rothblat, G. H., 1990, The efflux of lysosomal cholesterol from cells, J. Biol Chem. 265:5546–5553.

    CAS  Google Scholar 

  • Jones, C. S., Shankaran, P., and Callahan, J. W., 1981, Purification of sphingomyelinase to apparent homogeneity by using hydrophobic chromatography, Biochem. J. 195:373–382.

    CAS  Google Scholar 

  • Jones, C. S., Shankaran, P., Davidson, D. J., Poulos, A., and Callahan, J. W., 1983, Studies on the structure of sphingomyelinase. Amino acid composition and heterogeneity on isoelectric focusing, Biochem. J. 209:291–297.

    CAS  Google Scholar 

  • Jones, N. L., Allen, N. S., and Lewis, J. C., 1991, βVLDL uptake by pigeon monocyte-derived macrophages:Correlation of binding dynamics with three-dimensional ultrastructure, Cell Motil. Cytoskel. 19:139–151.

    CAS  Google Scholar 

  • Kamoshita, S., Aron, A. M., Suzuki, K., and Suzuki, K., 1969, Infantile Niemann-Pick disease. A chemical study with isolation and characterization of membranous cytoplasmic bodies and myelin, Am. J. Dis. Child. 117:379–394.

    CAS  Google Scholar 

  • Kamrath, F. J., Dodt, G., Debuch, H., and Uhlenbruck, G., 1984, The isolation of lysosomes from normal rat liver by affinity chromatography, Hoppe-Seylers’s Z, Physiol. Chem. 365:539–547.

    CAS  Google Scholar 

  • Kanfer, J. N., Young, O. M., Shapiro, D., and Brady, R. O., 1966, The metabolism of sphingomyelin. I. Purification and properties of sphingomyelin cleaving enzyme from rat liver tissues, J. Biol. Chem. 241:1081–1084.

    CAS  Google Scholar 

  • Katz, S. S., Shipley, G. G., and Small, D. M., 1976, Physical chemistry of the lipids of human atherosclerotic lesions, J. Clin. Invest. 58:200–211.

    CAS  Google Scholar 

  • Khoo, J. C., Miller, E., McLaughlin, P., and Steinberg, D., 1988, Enhanced macrophage uptake of low density lipoprotein after self-aggeration, Arteriosclerosis 8:348–358.

    CAS  Google Scholar 

  • Klein, A., Henseler, M., Klein, C., Suzuki, K., Harzer, K., and Sandhoff, K., 1994, Sphingolipid activator protein D (sap-D) stimulates the lysosomal degradation of ceramide in vivo, Biochem. Biophys. Res. Commun. 200:1440–1448.

    CAS  Google Scholar 

  • Kleinschmidt, T., Christomanou, H., and Braunitzer, G., 1988, Complete amino-acid sequence of the naturally occurring A2 activator protein for enzymic sphingomyelin degradation: Identity to the sulfatide activator protein (SAP-1), Biol Chem. Hoppe-Seyler 369:1361–1365.

    CAS  Google Scholar 

  • Klements, R., and Lundberg, B., 1984, Purification of lysosomal cholesteryl ester hydrolase from rat liver by preparative isoelectric focusing, Lipids 19:692–698.

    Google Scholar 

  • Klements, R., and Lundberg, B., 1986, Substrate specificity of lysosomal cholesteryl ester hydrolase isolated from rat liver, Lipids 21:481–485.

    Google Scholar 

  • Koval, M., and Pagano, R. E., 1990, Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick type A fibroblasts, J. Cell Biol. 111:429–442.

    CAS  Google Scholar 

  • Koval, M., and Pagano, R. E., 1991, Intracellular transport and metabolism of sphingomyelin, Biochim. Biophys. Acta 1082:113–125.

    CAS  Google Scholar 

  • Kovanen, P. T., 1991, Mast cell granule-mediated uptake of low density lipoproteins by macrophages: A novel carrier mechanism leading to the formation of foam cells, Ann. Med. 23:551–559.

    CAS  Google Scholar 

  • Krieger, M., Brown, M. S., Faust, J. R., and Goldstein, J. L., 1978, Replacement of endogenous cholesteryl esters of low density lipoprotein with exogenous cholesteryl linoleate, J. Biol Chem. 253:4093–4101.

    CAS  Google Scholar 

  • Krieger, M., McPhaul, M. J., Goldstein, J. L., and Brown, M. S., 1979, Replacement of neutral lipids of low density lipoprotein with esters of long chain unsaturated fatty acids, J. Biol. Chem. 254:3845–3853.

    CAS  Google Scholar 

  • Kruth, H. S., Skarlatos, S. I., Lilly, K., Chang, J., and Ifrim, I., 1995, Sequestration of acetylated LDL and cholesterol crystals by human monocyte-derived macrophages, J. Cell Biol. 129:133–145.

    CAS  Google Scholar 

  • Kubo, M., and Hostetler, K. Y., 1985, Mechanism of cationic amphiphilic drug inhibition of purified lysosomal phospholipase A1, Biochemistry 24:6515–6520.

    CAS  Google Scholar 

  • Kudoh, T., and Wenger, D. A., 1982, Diagnosis of metachromatic leukodystrophy, Krabbe disease, and Farber disease after uptake of fatty acid-labeled cerebroside sulfate into cultured skin fibroblasts, J. Clin. Invest. 70:89–97.

    CAS  Google Scholar 

  • Kunze, H., Hesse, B., and Bohn, E., 1982, Hydrolytic degradation of phosphatidylethanolamine and phosphatidylcholine by isolated rat-liver lysosomes, Biochim. Biophys. Acta 711:10–18.

    CAS  Google Scholar 

  • Leighton, F., Poole, B., Beaufay, H., Baudhuin, P., Coffey, J. W., Fowler, S., and de Duve, C., 1968, The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with Triton WR-1339, J. Cell Biol. 37:482–513.

    CAS  Google Scholar 

  • Levade, T., Gatt, S., Maret, A., and Salvayre, R., 1991a, Different pathways of uptake and degradation of sphingomyelin by lymphoblastoid cells and the potential participation of the neutral sphin-gomyelinase, J. Biol. Chem. 266:13519–13529.

    CAS  Google Scholar 

  • Levade, T., Gatt, S., and Salvayre, R., 1991b, Uptake and degradation of several pyrenesphin-gomyelins by skin fibroblasts from control subjects and patients with Niemann-Pick disease, Biochem. J. 275:211–217.

    CAS  Google Scholar 

  • Levade, T., Tempesta, M. C., and Salvayre, R., 1993, The in situ degradation of ceramide, a potential lipid mediator, is not completely impaired in Farber disease, FEBS Lett. 329:306–312.

    CAS  Google Scholar 

  • Levran, O., Desnick, R. J., and Schuchman, E. H., 1991, Niemann-Pick type B. Identification of a single codon deletion in the acid sphingomyelinase gene and genotype/phenotype correlations in type A and B patients, J. Clin. Invest. 88:806–810.

    CAS  Google Scholar 

  • Lewis, J. C., Taylor, R. G., and Ohta, K., 1988, Lysosmal alterations during coronary atherosclerosis in the pigeon: Correlative cytochemical and three-dimensional HVEM/IVEM observations, Exp. Mol. Pathol. 48; 103–115.

    CAS  Google Scholar 

  • Liscum, L., and Dahl, N. K., 1992, Intracellular cholesterol transport, J. Lipid Res. 33:1239–1254.

    CAS  Google Scholar 

  • Liscum, L., and Faust, J. R., 1987, Low density lipoprotein (LDL)-mediated suppression of cholesterol synthesis and LDL uptake is defective in Niemann-Pick type C fibroblasts, J. Biol. Chem. 262:17002–17008.

    CAS  Google Scholar 

  • Liscum, L., and Faust, J. R., 1989, The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-β-[2-(diethyIamino)ethoxy] androst-5-en-17-one, J. Biol. Chem. 264:11796–11806.

    CAS  Google Scholar 

  • Liscum, L., and Underwood, K. W., 1995, Intracellular cholesterol transport and compartmentation, J. Biol. Chem. 270:15443–15446.

    CAS  Google Scholar 

  • Liscum, L., Ruggiero, R. M., and Faust, J. R., 1989, The intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts, J. Cell Biol. 108:1625–1636.

    CAS  Google Scholar 

  • Lougheed, M., Zhang, H. F., and Steinbrecher, U. P., 1991, Oxidized low density lipoprotein is resistant to cathepsins and accumulates within macrophages, J. Biol. Chem. 266:14519–14525.

    CAS  Google Scholar 

  • Lundberg, B. B., Rothblat, G. H., Glick, J. M., and Phillips, M. C., 1990, Effect of substrate physical state on the activity of acid cholesteryl ester hydrolase, Biochim. Biophys. Acta 1042:301–309.

    CAS  Google Scholar 

  • Lupu, F., Danaricu, I., and Simionescu, N., 1987, Development of intracellular lipid deposits in the lipid-laden cells of atherosclerotic lesions, Atherosclerosis 67:127–142.

    CAS  Google Scholar 

  • Ma, H., and Kovanen, P. T., 1995, IgE-dependent generation of foam cells: An immune mechanism involving degranulation of sensitized mast cells with resultant uptake of LDL by macrophages, Arterioscler. Thromb. 15:811–819.

    CAS  Google Scholar 

  • Mahlberg, F. H., Glick, J. M., Jerome, W. G., and Rothblat, G. H., 1990, Metabolism of cholesteryl ester lipid droplets in a J774 macrophage foam cell model, Biochim. Biophys. Acta 1045: 291–298.

    CAS  Google Scholar 

  • Mander, E. L., Dean, R. T., Stanley, K. K., and Jessup, W., 1994, Apolipoprotein B of oxidized LDL accumulates in the lysosomes of macrophages, Biochim. Biophys. Acta 1212:80–92.

    CAS  Google Scholar 

  • Maor, I., and Aviram, M., 1994, Oxidized low density lipoprotein leads to macrophage accumulation of unesterified cholesterol as a result of lysosomal trapping of the lipoprotein hydrolyzed cholesteryl ester, J. Lipid Res. 35:803–819.

    CAS  Google Scholar 

  • Marzella, L., Ahlberg, J., and Glaumann, H., 1981, Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation, Virchows Arch. Cell. Pathol. 36:219–234.

    CAS  Google Scholar 

  • Matsuzawa, Y., and Hostetler, K. Y., 1980, Properties of phospholipase C isolated from rat liver lysosomes, J. Biol. Chem. 255:646–652.

    CAS  Google Scholar 

  • Matsuzawa, Y., Poorthuis, B. J. H. M., and Hostetler, K. Y., 1978, Mechanism of phosphatidylinositol stimulation of lysosomal bis(monoacylglycero)phosphate synthesis, J. Biol. Chem. 253: 6650–6653.

    CAS  Google Scholar 

  • Maziere, J. C., Wolf, C., Maziere, C., Mora, L., Bereziat, G., and Polonovski, J., 1981, Inhibition of human fibroblasts sphingomyelinase by cholesterol and 7-dehydrocholesterol Biochem. Biophys. Res. Commun. 100:1299–1304.

    CAS  Google Scholar 

  • Merrill, A. H., Hannun, Y A., and Bell, R. M., 1993, Introduction: Sphingolipids and their metabolites in cell regulation, in Advances in Lipid Research, Vol. 25 (R. M. Bell, A. H. Merrill, and Y A. Hannun, eds.), pp. 1–24, Academic Press, Inc., San Diego, California.

    Google Scholar 

  • Minor, L. K., Rothblat, G. H., and Glick, J. M., 1989, Triglyceride and cholesteryl ester hydrolysis in a cell culture model of smooth muscle foam cells, J. Lipid Res. 30:189–197.

    CAS  Google Scholar 

  • Minor, L. K., Mahlberg, F. H., Jerome, W. G., Lewis, J. C., Rothblat, G. H., and Glick, J. M., 1991, Lysosomal hydrolysis of lipids in a cell culture model of smooth muscle foam cells, Exp. Mol. Pathol. 540:159–171.

    Google Scholar 

  • Momoi, T., Ben-Yoseph, Y., and Nadler, H. L., 1982, Substrate-specificities of acid and alkaline ceramidases in fibroblasts from patients with Farber disease and controls, Biochem. J. 205:419–425.

    CAS  Google Scholar 

  • Morimoto, S., Martin, B. M., Kishimoto, Y., and O’Brien, J. S., 1988, Saposin D: A sphingomyelinase activator, Biochem. Biophys. Res. Commun. 156:403–410.

    CAS  Google Scholar 

  • Moser, H. W., 1995, Ceramidase deficiency: Farber lipogranulomatosis, in The Metabolic and Molecular Bases of Inheritied Disease, 7th Ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 2589–2599, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Munford, R. S., Sheppard, P. O., and O’Hara, P. J., 1995, Saposin-like proteins (SAPLIP) carry out diverse functions on a common backbone structure, J. Lipid Res. 36:1653–1663.

    CAS  Google Scholar 

  • Negre, A., Salvayre, R., Rogalle, P., Dang, Q. Q., and Douste-Blazy, L., 1987, Acyl-chain specificity and properties of cholesterol esterases from normal and Wolman lymphoid cell lines, Biochim. Biophys. Acta 918:76–82.

    CAS  Google Scholar 

  • Newrzella, D., and Stoffel, W., 1992, Molecular cloning of the acid sphingomyelinase of the mouse and the organization and complete nucleotide sequence of the gene, Biol. Chem. Hoppe-Seyler 373:1233–1238.

    CAS  Google Scholar 

  • Niemann, A., 1914, Ein unbekanntes Krankheitsbild, Jarb. Kinderheilk 79:1–10.

    Google Scholar 

  • Nilsson, A., 1969, The presence of spingomyelin-and ceramide-cleaving enzymes in the small intestinal tract, Biochim. Biophys. Acta 176:339–347.

    CAS  Google Scholar 

  • Olsson, J. M., Eriksson, L. C., and Daliner, G., 1991, Lipid compositions of intracellular membranes isolated from rat liver nodules in Wistar rats, Cancer Res. 51:3774–3780.

    CAS  Google Scholar 

  • Osada, J., Aylagas, H., Sanchez-Prieto, J., Sanchez-Vegazo, I., and Palacios-Alaiz, E., 1990, Isolation of rat liver lysosomes by a single two-phase partition on dextran/polyethylene glycol, Analyt. Biochem. 185:249–253.

    CAS  Google Scholar 

  • Paton, B. C., Schmid, B., Kustermann-Kuhn, B., Poulos, A., and Harzer, K., 1992, Additional biochemical findings in a patient and fetal sibilng with a genetic defect in the sphingolipid activator protein (SAP) precursor, prosaposin, Biochem. J. 285:481–488.

    CAS  Google Scholar 

  • Pentchev, P. G., Brady, R. O., Gal, A. E., and Hibbert, S. R., 1977, The isolation and characterization of sphingomyelinase from human placental tissue, Biochim. Biophys. Acta 488:312–321.

    CAS  Google Scholar 

  • Pentchev, P. G., Comly, M. E., Kruth, H. S., Tokoro, T., Butler, J., Sokol, J., Filling-Katz, M., Quirk, J. M., Marshall, D. C., Patel, S., Vanier, M. T., and Brady, R. O., 1987, Group C Niemann-Pick disease: Faulty regulation of low-density lipoprotein uptake and cholesterol storage in cultured fibroblasts, FASEB J. 1:40–45.

    CAS  Google Scholar 

  • Pereira, L. V., Desnick, R. J., Adler, D. A., Disteche, C. M., and Schuchman, E. H., 1991, Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15–11p15.4, Genomics 9:229–234.

    CAS  Google Scholar 

  • Peters, T. J., and de Duve, C., 1974, Lysosomes of the arterial wall. II. Subcellular fractionation of aortic cells from rabbits with experimental atheroma, Exp. Mol. Pathol. 20:228–256.

    CAS  Google Scholar 

  • Pitas, R. E., 1990, Expression of the acetyl low density lipoprotein receptor by rabbit fibroblasts and smooth muscle cells, J. Biol. Chem. 265:12722–12727.

    CAS  Google Scholar 

  • Pitas, R. E., Innerarity, T. L., and Mahley, R. W., 1983, Foam cells in expiants of atherosclerotic rabbit aortas have receptors for B-VLDL and modified LDL, Arteriosclerosis 3:2–12.

    CAS  Google Scholar 

  • Pitas, R. E., Friera, A., McGuire, J., and Dejager, S., 1992, Further characterization of the acetyl LDL (scavenger) receptor expressed by rabbit smooth muscle cells and fibroblasts, Arterioscler. Thromb. 12:1235–1244.

    CAS  Google Scholar 

  • Ponting, C. P., 1994, Acid sphingomyelinase possesses a domain homologous to its activator proteins: Saposins B and D, Protein Sci. 3:359–361.

    CAS  Google Scholar 

  • Poulos, A., Ranieri, E., Shankaran, P., and Callahan, J. W., 1984, Studies on the activation of the enzymatic hydrolysis of sphingomyelin liposomes, Biochim. Biophys. Acta 793:141–148.

    CAS  Google Scholar 

  • Prensky, A. L., Ferreira, G., Carr, S., and Moser, H. W., 1967, Ceramide and ganglioside accumulation in Farber’s lipogranulomatosis, Proc. Soc. Exp. Biol. Med. 126:725–728.

    CAS  Google Scholar 

  • Quintern, L. E., Weitz, G., Nehrkorn, H., Tager, J. M., Schram, A. W., and Sandhoff, K., 1987, Acid sphingomyelinase from human urine: Purification and characterization, Biochim. Biophys. Acta 922:323–336.

    CAS  Google Scholar 

  • Quintern, L. E., Schuchman, E. H., Levran, O., Suchi, M., Sandhoff, K., and Desnick, R. J., 1989, Isolation of cDNA clones encoding human acid sphingomyelinase. Occurrence of alternatively spliced transcripts, EMBO J. 8:2469–2473.

    CAS  Google Scholar 

  • Rao, B. G., and Spence, M. W., 1976, Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0, J. Lipid Res. 17:506–515.

    CAS  Google Scholar 

  • Rauch, H. J., and Auböck, L., 1983, “Banana bodies” in disseminated lipogranulomatosis (Farber’s disease), Am. J. Dermatopathol. 5:263–266.

    CAS  Google Scholar 

  • Rhee, S. G., Suh, P. G., Ryu, S.-H., and Lee, S. Y., 1989, Studies of inositol phospholipid-specific phospholipase C, Science 244:546–550.

    CAS  Google Scholar 

  • Richards, D. E., Irvine, R. F., and Dawson, R. M. C., 1979, Hydrolysis of membrane phospholipids by phospholipases of rat liver lysosomes, Biochem. J. 182:599–606.

    CAS  Google Scholar 

  • Rip, J. W., Biais, M. M., and Jiang, L. W., 1994, Low-density lipoprotein as a transporter of dolichol intermediates in the mammalian circulation, Biochem. J. 297:321–325.

    CAS  Google Scholar 

  • Robinson, M., and Waite, M., 1983, Physical-chemical requirements for the catalysis of substrates by lysosomal phospholipase A1, J. Biol. Chem. 258:14371–14378.

    CAS  Google Scholar 

  • Rodriguez-Lafrasse, C., Rousson, R., Bonnet, J., Pentchev., P. G., Louisot, P., and Vanier, M. T., 1990, Abnormal cholesterol metabolism in imipramine-treated fibroblast cultures. Similarities with Niemann-Pick type C disease, Biochim. Biophys. Acta 1043:123–128.

    CAS  Google Scholar 

  • Roff, C. F., Goldin, E., Comly, M. E., Cooney, A., Brown, A., Vanier, M. T., Miller, S. P. F., Brady, R. O., and Pentchev, P. G., 1991, Type C Niemann-Pick disease: Use of hydrophobic amines to study defective cholesterol transport, Dev. Neurosci. 13:315–319.

    CAS  Google Scholar 

  • Roholt, O. A., and Schlamowtitz, M., 1961, Studies of the use of dihexanoyllecithin and other lecithins as substrates for phospholipase A, Arch. Biochem. Biophys. 94:364–379.

    CAS  Google Scholar 

  • Roma, P., Bernini, F., Fogliatto, R., Bertulli, S. M., Negri, S., Fumagalli, R., and Catapano, A. L., 1992, Defective catabolism of oxidized LDL by J774 murine macrophages, J. Lipid Res. 22:819–829.

    Google Scholar 

  • Rosenfeld, M. E., and Ross, R., 1990, Macrophages and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits, Arteriosclerosis 10:680–687.

    CAS  Google Scholar 

  • Ross, A. C., Go, K., Heider, J., and Rothblat, G. H., 1984, Selective inhibition of acylCoA:cholesterol acyltransferase by compound 58-035, J. Biol. Chem. 258:815–819.

    Google Scholar 

  • Rothblat, G. H., Rosen Jr., J. M., Insull, W., Yau, A. O., and Small, D. M., 1977, Production of cholesteryl ester-rich anisotropic inclusions by mammalian cells in culture, Exp. Mol. Pathol. 26:318–324.

    CAS  Google Scholar 

  • Rouser, G., Kritchevsky, G., Yamamoto, A., Knudson, A. G. J., and Simon, G., 1968, Accumulation of a glycerolphospholipid in classical Niemann-Pick disease, Lipids 3:287–290.

    CAS  Google Scholar 

  • Rousson, R., Parvaz, P., Bonnet, J., Rodriguez-Lafrasse, C., Louisot, P., and Vanier, M. T., 1993, Preparation of an anti-acid sphingomyelinase monoclonal antibody for the quantitative determination and polypeptide analysis of lysosomal sphingomyelinase in fibroblasts from normal and Niemann-Pick type A patients, J. Immunol. Methods 160:199–206.

    CAS  Google Scholar 

  • Rutsaert, J., Tondeur, M., Vamos-Hurwitz, E., and Dustin, P., 1977, The cellular lesions of Farber’s disease and their experimental reproduction in tissue culture, Lab. Invest. 36:474–480.

    CAS  Google Scholar 

  • Sakuragawa, N., 1982, Acid sphingomyelinase of human placenta: Purification, properties, and 125iodine labeling, J. Biochem. 92:637–646.

    CAS  Google Scholar 

  • Sandhoff, K., and Klein, A., 1994, Intracellular trafficking of glycosphingolipids: Role of sphingolipid activator proteins in the topology of endocytosis and lysosomal digestion, FEBS Lett. 346:103–107.

    CAS  Google Scholar 

  • Sandhoff, K., Harzer, K., and Furst, W., 1995, Sphingolipid activator proteins, in The Metabolic and Molecular Bases of Inherited Disease, 7th Ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 2427–2441, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Sando, G. N., and Rosenbaum, L. M., 1985, Human lysosomal acid lipase/cholesteryl ester hydrolase: Purification and properties of the form secreted by fibroblasts in microcarrier culture, J. Biol. Chem. 260:15186–15193.

    CAS  Google Scholar 

  • Sawant, P. L., Shibko, S., Kumta, U. S., and Tappal, A. L., 1964, Isolation of rat liver lysosomes and their general properties, Biochim. Biophys. Acta 85:82–92.

    CAS  Google Scholar 

  • Schuchman, E. H., and Desnick, R. J., 1995, Niemann-Pick disease types A and B: Acid sphingomyelinase deficiencies, in The Metabolic and Molecular Bases of Inherited Disease, 7th Ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 2601–2624, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Schuchman, E. H., Suchi, M., Takahashi, T., Sandhoff, K., and Desnick, R. J., 1991, Human acid sphingomyelinase. Isolation, nucleotide sequence and expression of the full-length and alternatively spliced cDNAs, J. Biol. Chem. 266:8531–8539.

    CAS  Google Scholar 

  • Schuchman, E. H., Levran, O., Periera, L. V., and Desnick, R. J., 1992, Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1), Genomics 12:197–205.

    CAS  Google Scholar 

  • Scriver, C. R., Beaudet, A. L., Sly, W. S., and Nalle, D. (eds.), 1995, The Metabolic and Molecular Bases of Inherited Disease, Vol. II, 7th Ed., McGraw Hill, Inc., New York.

    Google Scholar 

  • Shio, H., Haley, N. J., and Fowler, S., 1978, Characterization of lipid-laden aortic cells from cholesterol-fed rabbits II. Morphometric analysis of lipid-filled lysosomes and lipid droplets in aortic cell population, Lab. Invest. 39:390–397.

    CAS  Google Scholar 

  • Shio, H., Haley, N. J., and Fowler, S., 1979, Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholsteryl ester, Lab. Invest. 41:160–167.

    CAS  Google Scholar 

  • Small, D. M., 1970, The physical state of lipids of biological importance: cholesteryl esters, cholesterol, triglycerides, in Surface Chemistry of Biological Systems (M. Blank, ed.), pp. 55–83, Plenum Press, New York.

    Google Scholar 

  • Snow, J. W., McCloskey, H. M., Rothblat, G. H., and Phillips, M. C., 1988, Physical state of cholesteryl esters deposited in cultured macrophages, Biochemistry 27:3640–3646.

    CAS  Google Scholar 

  • Sparrow, C. P., Parthasarathy, S., and Steinberg, D., 1989, A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein, J. Biol. Chem. 264:2599–2604.

    CAS  Google Scholar 

  • Spence, M. W., 1993, Sphingomyelinases, in Advances in Lipid Research, Vol. 26, (R. M. Bell, A. H. Merrill, and Y. A. Hannun, eds.), pp. 3–23, Academic Press, Inc., San Diego, California.

    Google Scholar 

  • Spence, M. W., and Callahan, J. W., 1989, Sphingomyelin-cholesterol lipidoses: The Niemann-Pick group of diseases, in The Metabolic Basis of Inherited Diseases, 6th Ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), pp. 1655–1676, McGraw-Hill, New York.

    Google Scholar 

  • Spence, M. W., Clarke, J. T. R., and Cook, H. W., 1983, Pathways of sphingomyelin metabolism in cultured fibroblasts from normal and sphingomyelin lipidosis subjects, J. Biol. Chem. 258:8595–8600.

    CAS  Google Scholar 

  • Spence, M. W., Beed, S., and Cook, H. W., 1986, Acid and alkaline ceramidases of rat tissues, Biochem. Cell Biol. 64:400–404.

    CAS  Google Scholar 

  • Stary, H. C., Chandler, A. B., Glagov, S., Guyton, J. R., Insall, W., Rosenfeld, M. E., Schaffer, S. A., Schwartz, C. J., Wagner, W. D., and Wissler, R. W., 1994, A definition of initial, fatty streak, and intermediate lesions of atherosclerosis, Arterioscler. Thromb. 14:840–856.

    CAS  Google Scholar 

  • Steinberg, S. J., Ward, C. P., and Fensom, A. H., 1994, Complementation studies in Niemann-Pick disease type C indicate the existence of a second group, J. Med. Genet. 31:317–320.

    CAS  Google Scholar 

  • Stoffel, W., and Melzner, I., 1980, Studies in vitro on the biosynthesis of ceramide and sphingomyelin. A reevaluation of proposed pathways, Hoppe-Seylers Z. Physiol. Chem. 361:755–771.

    CAS  Google Scholar 

  • Stoffel, W., Kruger, E., and Melzner, I., 1980, Studies on the biosynthesis of ceramide. Does the reversed ceramidase reaction yield ceramides? Hoppe-Seyler’s Z. Physiol. Chem. 361:773–779.

    CAS  Google Scholar 

  • Sugita, M., Dulaney, J. T., and Moser, H. W., 1972, Ceramidase deficiency in Farber’s disease (lipogranulomatosis), Science 178:1100–1102.

    CAS  Google Scholar 

  • Sugita, M., Iwamori, M., Evans, J., McCluer, R. H., Dulaney, J. T., and Moser, H. W., 1974, High performance liquid chromatography of ceramides: Application to analysis in human tissues and demonstration of ceramide excess in Farber’s disease, J. Lipid Res. 15:223–226.

    CAS  Google Scholar 

  • Sugita, M., Williams, M., Dulaney, J. T., and Moser, H. W., 1975, Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase, Biochim. Biophys. Acta 398:125–131.

    CAS  Google Scholar 

  • Suits, A. G., Chait, A., Aviram, M., and Heinecke, J. W., 1989, Phagocytosis of aggregated lipoprotein by macrophages: Low density lipoprotein receptor-dependent foam-cell formation, Proc. Natl. Acad. Sci. USA 86:2713–2717.

    CAS  Google Scholar 

  • Sutrina, S. L., and Chen, W. W., 1982, Metabolism of ceramide-containing endocytotic vesicles in human diploid fibroblasts, J. Biol. Chem. 257:3039–3044.

    CAS  Google Scholar 

  • Suzuki, K., 1987, Enzymatic diagnosis of sphingolipidoses, in Methods in Enzymology—Complex Carbohydrates (Part E), Vol. 138, pp. 727–739, Academic Press, Inc., Orlando, Florida.

    Google Scholar 

  • Tabas, I., Lim, S., Xu, X.-X., and Maxfield, F. R., 1990, Endocytosed B-VLDL and LDL are delivered to different intracellular vesicles in mouse peritoneal macrophages, J. Cell Biol. 1411:929–940.

    Google Scholar 

  • Tangirala, R. K., Mahlberg, F. H., Glick, J. M., Jerome, W G., and Rothblat, G. H., 1993, Lysosomal accumulation of unesterified cholesterol in model macrophage foam cells, J. Biol. Chem. 268:9653–9660.

    CAS  Google Scholar 

  • Tangirala, R. K., Jerome, W. G., Jones, N. L., Small, D. M., Johnson, W. J., Glick, J. M., Mahlberg, F. H., and Rothblat, G., 1994, Formation of cholesterol monohydrate crystals in macrophage-derived foam cells, J. Lipid Res. 35:93–104.

    CAS  Google Scholar 

  • Tiffany, C. W., Al, E., Tager, J. M., Moser, H. W., and Kishimoto, Y., 1987, The use of antibody to characterize control and Farber disease ceramidase, J. Neurochem. 48:S35.

    Google Scholar 

  • Toppet, M., Vamos-Hurwitz, E., Jonniaux, G., Cremer, N., Tondeur, M., and Pelc, S., 1978, Farber’s disease as a ceramidosis: Clinical, radiological and biochemical aspects, Acta Paediatr. Scand. 67:113–119.

    CAS  Google Scholar 

  • Traynor, J. R., and Kalwant, S. A., 1981, Phospholipase A2 activity of lysosomal origin secreted by polymorphonuclear leucocytes during phagocytosis or on treatment with calcium, Biochim. Biophys. Acta 665:571–577.

    CAS  Google Scholar 

  • Trouet, A., 1974, Isolation of modified liver lysosomes, in Methods in Enzymology Biomembranes (Part A), Vol. 31 (S. Fleischer and L. Packer, eds.), pp. 323–329, Academic Press, Inc., London.

    Google Scholar 

  • Tsukada, T., Rosenfeld, M. E., Ross, R., and Gown, A. M., 1986, Immunocytochemical analysis of cellular components in atherosclerotic lesions, Arteriosclerosis 6:601–613.

    CAS  Google Scholar 

  • Ullman, M. D., and Radin, N. S., 1972, Enzymatic formation of hydroxy ceramides and comparison with enzymes forming nonhydroxy ceramides, Arch. Biochem. Biophys. 152:767–777.

    CAS  Google Scholar 

  • Van Berkel, T. J. C., Vaandrager, H., Kruijt, J. K., and Koster, J. F., 1980, Characteristics of acid lipase and acid cholesteryl esterase activity in parenchymal and non-parenchymal rat liver cells, Biochim. Biophys. Acta 617:446–457.

    Google Scholar 

  • Van den Bosh, H., and Aarsman, A. J., 1979, A review on methods of phospholipase A determination, Agents Actions 9:382–389.

    Google Scholar 

  • Van Lenten, B. J., Fogelman, A. M., Hokom, M. M., Benson, L., Haberland, M. E., and Edwards, P. E., 1983, Regulation of the uptake and degradation of B-very low density lipoprotein in human monocyte macrophages, J. Biol. Chem. 258:5151–5157.

    Google Scholar 

  • Vanier, M. T., 1983, Biochemical studies in Niemann-Pick disease. I. Major sphingolipids of liver and spleen, Biochim. Biophys. Acta 750:178–184.

    CAS  Google Scholar 

  • Verheij, H. M., Slotboom, A. J., and DeHaas, G. H., 1981, Structure and function of phospholipase A2, Rev. Physiol. Biochem. Pharmacol. 91:91–203.

    CAS  Google Scholar 

  • Vijayagopal, P., Srinivasan, S. R., Jones, K. M., Radhakrishnamurthy, B., and Berenson, G. S., 1985, Complexes of low-density lipoproteins and arterial proteoglycan aggregates promote cholesteryl ester accumulation in mouse macrophages, Biochim. Biophys. Acta 837:251–261.

    CAS  Google Scholar 

  • Waite, M., 1987, The phospholipases, in Handbook of Lipid Research, Vol. 5 (D. J. Hanahan, ed.) Plenum Press, New York.

    Google Scholar 

  • Waite, M., 1991, Phospholipases, enzymes that share a substrate class, in Advances in Experimental Medicine and Biology, Vol. 279 (A. B. Mukherjee, ed.), pp. 1–22, Plenum Press, New York.

    Google Scholar 

  • Waite, M., King, L., Thornburg, T., Osthoff, G., and Thuren, T. Y., 1990, Metabolism of phosphatidylglycerol and bis(monoacylglycero)phosphate in macrophage subcellular fractions, J. Biol. Chem. 265:21720–21726.

    CAS  Google Scholar 

  • Wang, Y., Lindstedt, K. A., and Kovanen, P. T., 1995, Mast cell granule remnants carry LDL into smooth muscle cells of the synthetic phenotype and induce their conversion into foam cells, Arterioscler. Thromb. 15:801–810.

    CAS  Google Scholar 

  • Wang-Iverson, P., Ginsberg, H. N., Peteanu, L. A., Le, N., and Brown, W. V., 1985, Apo E-mediated uptake and degradation of normal very low density lipoproteins by human monocyte/macrophages. A saturable pathway distinct from the LDL receptor, Biochem. Biophys. Res. Commun. 126:578–586.

    CAS  Google Scholar 

  • Warner, G. J., Stoudt, G., Bamberger, M., Johnson, W. J., and Rothblat, G. H., 1995, Cell toxicity induced by inhibition of acyl coenzyme Axholesterol acyltransferase and accumulation of unesterified cholesterol, J. Biol. Chem. 270:5772–5778.

    CAS  Google Scholar 

  • Watanabe, K., Sakuragawa, N., Arima, M., and Satoyoshi, E., 1983, Partial purification and properties of acid sphingomyelinase from rat liver, J. Lipid Res. 24:596–603.

    CAS  Google Scholar 

  • Weglicki, W. B., Ruth, R. C., Owens, K., Griffen, H. D., and Waite, B. M., 1974, Changes in lipid composition of triton-filled lysosomes during lysis, Biochim. Biophys. Acta 337:145–152.

    CAS  Google Scholar 

  • Weglicki, W. B., Ruth, R. C., Gottwik, M. G., Owens, K., Griffin, H. D., and Waite, B. M., 1975, Phospholipase A and acid lipase activity during release of lysosomal hydrolases, Recent Adv. Stud. Card. Struct. Metab. 7:49–59.

    CAS  Google Scholar 

  • Weitz, G., Driessen, J., Brouwer-Kelder, E. M., Sandhoff, K., Barranger, J. A., Tager, J. M., and Schram, A. W., 1985, Soluble sphingomyelinase from human urine as antigen for obtaining anti-sphingomyelinase antibodies, Biochim. Biophys. Acta 838:92–97.

    CAS  Google Scholar 

  • Wightman, P. D., Humes, J. L., Davies, P., and Bonney, R. J., 1981, Identification and characterization of two phospholipase A2 activities in resident mouse peritoneal macrophages, Biochem. J. 195:427–433.

    CAS  Google Scholar 

  • Wilson, C., Wardell, M. R., Weisgraber, K. H., Mahley, R. W., and Agard, D. A., 1991,Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E, Science 252:1817–1822.

    CAS  Google Scholar 

  • Wolfbauer, G., Glick, J. M., Minor, L. K., and Rothblat, G. H., 1986, Development of the smooth muscle foam cell: Uptake of macrophage lipid inclusions, Proc. Natl. Acad. Sci. USA 83:7760–7664.

    CAS  Google Scholar 

  • Wong, T. K., and Lennarz, W. J., 1982, The site of biosynthesis and intracellular deposition of dolichol in rat liver, J. Biol. Chem. 257:6619–6624.

    CAS  Google Scholar 

  • Wong, T. K., Decker, G. L., and Lennarz, W. J., 1982, Localization of dolichol in the lysosomal fraction of rat liver, J. Biol. Chem. 257:6614–6618.

    CAS  Google Scholar 

  • Yamanaka, T., and Suzuki, K., 1982, Acid sphingomyelinase of human brain: Purification to homogeneity, J. Neurochem. 38:1753–1764.

    CAS  Google Scholar 

  • Yavin, E., and Gatt, S., 1969, Enzymatic hydrolysis of sphingolipids. VIII. Further purification and properties of rat brain ceramidase, Biochemistry 8:1692–1698.

    CAS  Google Scholar 

  • Yedgar, S., and Gatt, S., 1976, Effect of Triton X-100 on the hydrolysis of sphingomyelin by sphingomyelinase of rat brain, Biochemistry 15:2570–2573.

    CAS  Google Scholar 

  • Yedgar, S., and Gatt, S., 1980, Enzymic hydrolysis of sphingomyelin in the presence of bile salts, Biochem. J. 185:749–754.

    CAS  Google Scholar 

  • Yoshida, Y., Arimoto, K., Sato, M., Sakuragawa, N., Arima, M., and Satoyoshi, E., 1985, Reduction of acid sphingomyelinase activity in human fibroblasts induced by AY-9944 and other cationic amphiphilic drugs, J. Biochem. 98:1669–1679.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, W.J., Warner, G.J., Yancey, P.G., Rothblat, G.H. (1996). Lysosomal Metabolism of Lipids. In: Lloyd, J.B., Mason, R.W. (eds) Biology of the Lysosome. Subcellular Biochemistry, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5833-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5833-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7674-3

  • Online ISBN: 978-1-4615-5833-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics