Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 27))

Abstract

Autophagy and autophagocytosis are terms given to a membrane-mediated process in eukaryotic cells in which portions of cytoplasm are sequestered within vacuoles and degraded by acid hydrolases acquired by fusion with lysosomes. Although vacuoles of this type may be formed under pathologic conditions, autophagy is fundamentally a physiological process that plays indispensable roles in cell restructuring and in the ongoing turnover of cellular protein and other macromolecules. Cytoplasmic sequestration is the one step in this pathway that distinguishes autophagy from other degradative processes in the cell. It is relatively nonselective as a volume uptake mechanism (one apparent exception is discussed in Section 3.1.2). Accordingly, most organelles and macromolecules are subject to vacuolar isolation in proportion to their cytoplasmic abundance. Moreover, non-selective uptake permits the simultaneous handling of more than one class of macromolecule. This is illustrated in the perfused rat liver by the striking similarity in the accelerated responses of protein and RNA degradation during amino acid deprivation (see Table I).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlberg, J., Berkenstam, A., Henell, F., and Glaumann, H., 1985, Degradation of short-and long-lived proteins in isolated rat liver lysosomes. Effects of pH, temperature, and proteolytic inhibitors, J. Biol. Chem. 260:5847–5854.

    CAS  Google Scholar 

  • Amenta, J. S., and Brocher, S. C., 1981, Mechanisms of protein turnover in cultured cells, Life Sci. 28:1195–1208.

    Article  CAS  Google Scholar 

  • Amherdt, J. S., Harris, V., Renold, A. E., Orci, L., and Unger, G. H., 1974, Hepatic autophagy in uncontrolled experimental diabetes and its relationship to insulin and glucagon, J. Clin. Invest. 54:188–193.

    Article  CAS  Google Scholar 

  • Aplin, A., Jasionowski, T., Tuttle, D. L., Lenk, S. E., and Dunn, W. A., Jr., 1992, Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles, J. Cell. Physiol. 152: 458–466.

    Article  CAS  Google Scholar 

  • Arstila, A. U., and Trump, B. F., 1968, Studies on autophagocytosis: The formation of autophagic vacuoles in the liver following glucagon administration, Am. J. Pathol. 53:687–733.

    CAS  Google Scholar 

  • Ashford, T. P., and Porter, K. R., 1962, Cytoplasmic components in hepatic cell lysosomes, J. Cell Biol. 12:198–202.

    Article  CAS  Google Scholar 

  • Auteri, J. S., Okada, A., Bochaki, V., and Dice, J. F., 1983, Regulation of intracellular protein degradation in IMR-90 human diploid fibroblasts, J. Cell Physiol. 115:167–174.

    Article  CAS  Google Scholar 

  • Balavoine, S., Feldmann, G., and Lardeux, B., 1990, Rates of RNA degradation in isolated rat hepatocytes. Effects of amino acids and inhibitors of lysosomal function, Eur. J. Biochem. 189:617–623.

    Article  CAS  Google Scholar 

  • Ballard, F. J., and Gunn, J. M., 1982, Nutritional and hormonal effect on intracellular protein catabolism, Nutr. Rev. 40:33–42.

    Article  CAS  Google Scholar 

  • Bleiberg-Daniel, F., Lamri, Y., Feldmann, G., and Lardeux, B., 1994, Glucagon administration in vivo stimulates hepatic RNA and protein breakdown in fed and fasted rats, Biochem. J. 299:645–649.

    CAS  Google Scholar 

  • Blommaart, E. E C., Luiken, J. J., Blommaart, P. J., Van Woerkom, G. M., and Meijer, A. J., 1995, Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes, J. Biol Chem. 270:2320–2326.

    Article  CAS  Google Scholar 

  • Buse, M. G., and Reid, S. S., 1975, Leucine: A possible regulator of protein turnover in muscle, J. Clin. Invest. 56:1250–1261.

    Article  CAS  Google Scholar 

  • Canut, H., Alibert, G., and Boudet, A. M., 1985, Hydrolysis of intracellular proteins in vacuoles isolated from Acer Pseudoplatanus L. cells, Plant Physiol. 79:1090–1093.

    Article  CAS  Google Scholar 

  • Cardell Jr., R. R., 1977, Smooth endoplasmic reticulum in rat hepatocytes during glycogen deposition and depletion, Int. Rev. Cytol. 48:221–279.

    Article  CAS  Google Scholar 

  • Caro, L. H. P., Plomp, P. J. A. M., Leverve, X. M., and Meijer, A. J., 1989, A combination of intracellular leucine with glutamate or aspartate inhibits autophagic proteolysis in isolated rat hepatocytes, Eur. J. Biochem. 181:717–720.

    Article  CAS  Google Scholar 

  • Chua, B. H. L., Kao, R. L., Rannels, D. E., and Morgan, H. E., 1978, Effects of epinephrine and glucagon on protein turnover in perfused rat heart, Fed. Proc. Fed. Am. Soc. Exp. Biol. 37:1333A.

    Google Scholar 

  • Chua, B. H. L., Watkins, C. A., Siehl, D. L., and Morgan, H. E., 1978, Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts, J. Biol.Chem. 254:6617–6623.

    Google Scholar 

  • Ciechanover, A., Finley, D., and Varshavsky, A., 1984, The ubiquitin-mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation, J. Cell Biochem. 24:27–53.

    Article  CAS  Google Scholar 

  • Conde, R. D., and Scornik, O. A., 1976, Role of protein degradation in the growth of livers after a nutritional shift, Biochem. J. 158:385–390.

    CAS  Google Scholar 

  • Dämmrich, J., and Pfeifer, U., 1981, Acute effects of isoproterenol on cellular autophagy. Inhibition in myocardium but stimulation in liver parenchyma, Virchows Arch B 38:209–218.

    Article  Google Scholar 

  • de Duve, C., and Wattiaux, R., 1966, Functions of lysosomes, Annu. Rev. Physiol. 28:435–492.

    Article  Google Scholar 

  • Deter, R. L., Baudhuin, P., and de Duve, C., 1967, Participation of lysosomes in cellular autophagy induced in rat liver by glucagon, J. Cell Biol. 35:C11–C16.

    Article  CAS  Google Scholar 

  • de Waal, E. J., Vreeling-Sindelárová, H., Schellens, J. P., Houtkooper, J. M., and James, J., 1986, Quantitative changes in the lysosomal vacuolar system of rat hepatocytes during short-term starvation. A morphometric analysis with special reference to macro-and microautophagy, Cell Tissue Res. 243:641–648.

    Article  Google Scholar 

  • Dice, F. J., and Terlecky, S. R., 1994, Selective degradation of cytosolic proteins by lysosomes, in Cellular Proteolytic Systems (A. J. Ciechanover and A. L. Schwartz, eds.), pp. 55–64, Wiley-Liss, New York.

    Google Scholar 

  • Dunn Jr., W. A., 1990a, Studies on the mechanism of autophagy: Formation of the autophagic vacuole, J. Cell Biol. 110:1923–1933.

    Article  Google Scholar 

  • Dunn Jr., W. A., 1990b, Studies on the mechanism of autophagy: Maturation of the autophagic vacuole, J. Cell Biol. 110:1935–1945.

    Article  CAS  Google Scholar 

  • Epstein, D., Elias-Bishko, S., and Hershko, A., 1975, Requirement for protein synthesis in the regulation of protein breakdown in cultured hepatoma cells, Biochemistry 14:5199–5204.

    Article  CAS  Google Scholar 

  • Fulks, R. M., Li, J. B., and Goldberg, A. L., 1975, Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm, J. Biol Chem. 250:290–298.

    CAS  Google Scholar 

  • Garber, A. J., Karl, I. E., and Kipnis, D. M., 1976, Alanine and glutamine synthesis and release from skeletal muscle. IV. β-Adrenergic inhibition of amino acid release, J. Biol. Chem. 251:851–857.

    CAS  Google Scholar 

  • Goldberg, A. L., 1992, The mechanisms and functions of ATP-dependent proteases in bacterial and animal cells, Eur. J. Biochem. 203:9–23.

    Article  CAS  Google Scholar 

  • Gordon, P. B., and Seglen, P. O., 1988, Prelysosomal convergence of autophagic and endocytic pathways, Biochem. Biophys. Res. Commun. 151:40–47.

    Article  CAS  Google Scholar 

  • Gordon, P. B., Høyvik, H., and Seglen, P. O., 1992, Prelysosomal and lysosomal connections between autophagy and endocytosis, Biochem. J. 283:361–369.

    Google Scholar 

  • Grinde, B., and Seglen, P. O., 1981, Leucine inhibition of autophagic vacuole formation in isolated rat hepatocytes, Exp. Cell Res. 134:33–39.

    Article  CAS  Google Scholar 

  • Gropper, R., Brandt, R. A., Elias, S., Bearer, C. F., Mayer, A., Schwartz, A. L., and Ciechanover, A., 1991, The ubiquitin-activating enzyme, El, is required for stress-induced lysosomal degradation of cellular proteins, J. Biol Chem. 266:3602–3610.

    CAS  Google Scholar 

  • Hallbrucker, C., vom Dahl, S., Lang, F., and Häussinger, D., 1991, Control of hepatic proteolysis by amino acids. The role of cell volume, Eur. J. Biochem. 197:717–724.

    Article  CAS  Google Scholar 

  • Häussinger, D., Hallbrucker, C., vom Dahl, S., Lang, F., and Gerok, W., 1990, Cell swelling inhibits proteolysis in perfused rat liver, Biochem. J. 272:239–242.

    Google Scholar 

  • Häussinger, D., Newsome, W., vom Dahl, S., Stoll, B., Noe, B., Schreiber, R., Wettstein, M., and Lang, F., 1994, The role of cell volume changes in metabolic regulation, Biochem. Soc. Trans. 22:497–502.

    Google Scholar 

  • Henell, F., and Glaumann, H., 1984, Effect of leupeptin on the autophagic vacuolar system of rat hepatocytes. Correlation between ultrastructure and degradation of membrane and cytosolic proteins, Lab. Invest. 51:46–56.

    CAS  Google Scholar 

  • Heydrick, S. J., Lardeux, B. R., and Mortimore, G. E., 1991, Uptake and degradation of cytoplasmic RNA by hepatic lysosomes: Quantitative relationship to RNA turnover, Biol. Chem. 266: 8790–8796.

    CAS  Google Scholar 

  • Hirsimäki, P., Arstila, A. U., Trump, B. F., and Marzella, L., 1983, Autophagocytosis, in Pathobiology of Cell Membranes (A. U. Arstila and B. F. Trump, eds.), pp. 201–235, Academic Press, New York/London.

    Google Scholar 

  • Hirsimäki, Y, and Hirsimäki, P., 1984, Vinblastine-induced autophagocytosis: The effect of disorganization of microfilaments by cytochalasin B, Exp. Mol. Pathol. 40:61–69.

    Article  Google Scholar 

  • Hopgood, M. F., Clark, M. G., and Ballard, F. J., 1980, Protein degradation in hepatocyte monolayers. Effects of glucagon, adenosine 3′:5′-cyclic monophosphate and insulin, Biochem. J. 186:71–79.

    CAS  Google Scholar 

  • Hutson, N. J., and Mortimore, G. E., 1982, Suppression of cytoplasmic protein uptake by lysosomes as the mechanism of protein regain in livers of starved-refed mice, J. Biol. Chem. 257:9548–9554.

    CAS  Google Scholar 

  • Jefferson, L. S., Rannels, D. E., Munger, B. L., and Morgan, H. E., 1974, Insulin in the regulation of protein turnover in heart and skeletal muscle, Fed. Proc. Fed. Am. Soc. Exp. Biol. 33:1098–1104.

    CAS  Google Scholar 

  • Jones, E. W., and Murdock, D. G., 1994, Proteolysis in the yeast vacuole, in Cellular Proteolytic Systems (A. J. Ciechanover and A. L. Schwartz, eds.) pp. 55–64, Wiley-Liss, New York.

    Google Scholar 

  • Kadowaki, M., Pösö, A. R., and Mortimore, G. E., 1992, Parallel control of hepatic proteolysis by phenylalanine and phenylpyruvate through independent sites at the plasma membrane, J. Biol. Chem. 267:22060–22065.

    CAS  Google Scholar 

  • Kadowaki, M., Venerando, R., Miotto, G., and Mortimore, G. E., 1994, De novo autophagic vacuole formation in hepatocytes permeabilized by Staphylococcus aureus α-toxin: Inhibition by non-hydrolyzable GTP analogs, J. Biol Chem. 269:3703–3710.

    CAS  Google Scholar 

  • Khairallah, E. A., and Mortimore, G. E., 1976, Assessment of protein turnover in perfused rat liver: Evidence for amino acid compartmentation from differential labeling of free and tRNA-bound valine, J. Biol. Chem. 251:1375–1384.

    CAS  Google Scholar 

  • Knowles, S. E., and Ballard, F. J., 1976, Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells, Biochem. J. 156:609–617.

    CAS  Google Scholar 

  • Kominami, E., Hashida, S., Khairallah, E. A., and Katunuma, N., 1983, Sequestration of cytoplasmic enzymes in autophagic vacuole-lysosomal system induced by injection of leupeptin, J. Biol. Chem. 258:6093–6100.

    CAS  Google Scholar 

  • Kopitz, J., Kisen, G. Ø., Gordon, P. B., Bohley, P., and Seglen, P. O., 1990, Nonselective autophagy of cytosolic enzyme by isolated rat hepatocytes, J. Cell Biol. 111:941–953.

    Article  CAS  Google Scholar 

  • Kovács, A. L., and Seglen, P. O., 1981, Inhibition of hepatocytic protein degradation by methylamino-purines and inhibitors of protein synthesis, Biochim. Biophys. Acta 676:213–220.

    Article  Google Scholar 

  • Kovács, A. L., Grinde, B., and Seglen, P. O., 1981, Inhibition of autophagic vacuole formation and protein degradation by amino acids in isolated hepatocytes, Exp. Cell Res. 133:431–436.

    Article  Google Scholar 

  • Kov ács, J., Fellinger, E., Kárpáti, A. P., Kovács, A. L., László, L., and Réz, G., 1987, Morphometric evaluation of the turnover of autophagic vacuoles after treatment with Triton X-100 and vinblastine in murine pancreatic acinar and seminal vesicle epithelial cells, Virchows Arch B 53:183–190.

    Article  Google Scholar 

  • Lardeux, B. R., and Mortimore, G. E., 1987, Amino acid and hormonal control of macromolecular turnover in perfused rat liver: Evidence for selective autophagy, J. Biol. Chem. 262:14514–14519.

    CAS  Google Scholar 

  • Lardeux, B. R., Heydrick, S. J., and Mortimore, G. E., 1987, RNA degradation in perfused rat liver as determined from the release of [14C]cytidine, J. Biol Chem. 262:14507–14513.

    CAS  Google Scholar 

  • Lardeux, B. R., Heydrick, S. J., and Mortimore, G. E., 1988, Rates of rat liver RNA degradation in vivo as determined from cytidine release during brief cyclic perfusion in situ, Biochem. J. 252: 363–367.

    CAS  Google Scholar 

  • Lawrence, B. P., and Brown, W. J., 1992, Autophagic vacuoles rapidly fuse with pre-existing lysosomes in cultured hepatocytes, J. Cell Sci. 102:515–526.

    Google Scholar 

  • Lenk, S. E., Dunn Jr., W. A., Trausch, J. S., Ciechanover, A., and Schwartz, A. L., 1992, Ubiquitin-activating enzyme is associated with maturation of autophagic vacuoles, J. Cell. Biol. 118: 301–308.

    Article  CAS  Google Scholar 

  • Leverve, X. M., Caro, L. H., Plomp, P. J., and Meijer, A. J., 1987, Control of proteolysis in perfused rat hepatocytes, FEBS Lett. 219:455–458.

    Article  CAS  Google Scholar 

  • Li, J. B., and Jefferson, L. S., 1977, Effect of isoproterenol on amino acid levels and protein turnover in skeletal muscle, Am. J. Physiol. 232:E243–E249.

    CAS  Google Scholar 

  • Löw, P., Doherty, F. J., Sass, M., Kovács, J., Mayer, R. J., and Lászö, L., 1993, Immunogold localisation of ubiquitin-protein conjugates in Sf9 insect cells. Implications for the biogenesis of lysosome-related organelles, FEBS Lett. 316:152–156.

    Article  Google Scholar 

  • Marty, F., 1978, Cytochemical studies on GERL, provacuoles, and vacuoles in root meristematic cells of Euphorbia, Proc. Natl. Acad. Sci. USA 75:852–856.

    Article  CAS  Google Scholar 

  • Marzella, L., Ahlberg, J., and Glaumann, H., 1980, In vitro uptake of particles by lysosomes, Exp. Cell Res. 129:460–466.

    Article  CAS  Google Scholar 

  • May, L. T., Anderson, O. R., and Hogg, J. F., 1982, Changes of cellular structure and subcellular enzymatic patterns during the activation of glyconeogenesis in Tetrahymena pyriformis, J. Ultrastruct.Res. 81:271–289.

    Article  CAS  Google Scholar 

  • Meijer, A. J., Gustafson, L. A., Luiken, J. J., Blommaart, P. J., Caro, L. H., Van Woerkom, G. M., Spronk, C., and Boon, L., 1993, Cell swelling and the sensitivity of autophagic proteolysis to inhibition by amino acids in isolated rat hepatocytes, Eur. J. Biochem. 15:449–454.

    Article  Google Scholar 

  • Miotto, G., Venerando, R., and Siliprandi, N., 1989, Inhibitory action of isovaleryl-L-carnitine on proteolysis in perfused rat liver, Biochem. Biophys. Res. Commun. 158:797–802.

    Article  CAS  Google Scholar 

  • Miotto, G., Venerando, R., Khurana, K. K., Siliprandi, N., and Mortimore, G., 1992, Control of hepatic proteolysis by leucine and isovaleryl-L-carnitine through a common locus: Evidence for a possible mechanism of recognition at the plasma membrane, J. Biol. Chem. 267:22066–22072.

    CAS  Google Scholar 

  • Miotto, G., Venerando, R., Marin, O., Siliprandi, N., and Mortimore, G. E., 1994, Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptide Leu8-Lys4-Lys2-Lys-βAla, J. Biol Chem. 269:25348–25353.

    CAS  Google Scholar 

  • Mitch, W. E., and Clark, A. S., 1984, Specificity of the effects of leucine and its metabolites on protein degradation in skeletal muscle, Biochem. J. 222:579–586.

    CAS  Google Scholar 

  • Mitchener, J. S., Shelburne, J. D., Bradford, W. D., and Hawkins, H. K., 1976, Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells, Am. J. Pathol. 83:485–491.

    CAS  Google Scholar 

  • Mortimore, G. E., and Kadowaki, M., 1994, Autophagy: Its mechanism and regulation, in Cellular Proteolytic Systems (A. J. Ciechanover and A. L. Schwartz, eds.), pp. 65–87, Wiley-Liss, New York.

    Google Scholar 

  • Mortimore, G. E., and Mondon, C. E., 1970, Inhibition by insulin of valine turnover in liver: Evidence for a general control of proteolysis, J. Biol. Chem. 245:2375–2383.

    CAS  Google Scholar 

  • Mortimore, G. E., and Pösö, A. R., 1984, Lysosomal pathways in hepatic protein degradation: Regulatory role of amino acids, Fed. Proc. Fed. Am. Soc. Exp. Biol. 43:1289–1294.

    CAS  Google Scholar 

  • Mortimore, G. E., and Pösö, A. R., 1987, Intracellular protein catabolism and its control during nutrient deprivation and supply, Annu. Rev. Nutr. 7:539–564.

    Article  CAS  Google Scholar 

  • Mortimore, G. E., and Schworer, C. M., 1977, Induction of autophagy by amino acid deprivation in perfused rat liver, Nature 270:174–176.

    Article  CAS  Google Scholar 

  • Mortimore, G. E., and Ward, W. F., 1981, Internalization of cytoplasmic protein by hepatic lysosomes in basal and deprivation-induced proteolytic states, J. Biol Chem. 256:7659–7665.

    CAS  Google Scholar 

  • Mortimore, G. E., Woodside, K. H., and Henry, J. E., 1972, Compartmentation of free valine and its relation to protein turnover in perfused rat liver, J. Biol Chem. 247:2776–2784.

    CAS  Google Scholar 

  • Mortimore, G. E., Neely, A. N., Cox, J. R., and Guinivan, R. A., 1973, Proteolysis in homogenates of perfused rat liver: Responses to insulin, glucagon and amino acids, Biochem. Biophys. Res. Commun. 54:89–95.

    Article  CAS  Google Scholar 

  • Mortimore, G. E., Hutson, N. J., and Surmacz, C. A., 1983, Quantitative correlation between proteolysis and macro-and microautophagy in mouse hepatocytes during starvation and refeeding, Proc. Natl. Acad. Sci. USA 80:2179–2183.

    Article  CAS  Google Scholar 

  • Mortimore, G. E., Pösö, A. R., Kadowaki, M., and Wert Jr., J. J., 1987, Multiphasic control of hepatic protein degradation by regulatory amino acids: General features and hormonal modulation, J. Biol Chem. 262:16322–16327.

    CAS  Google Scholar 

  • Mortimore, G. E., Lardeux, B. R., and Adams, C. E., 1988a, Regulation of microautophagy and basal protein turnover in rat liver: Effects of short-term starvation, J. Biol Chem. 263:2506–2512.

    CAS  Google Scholar 

  • Mortimore, G. E., Wert Jr., J. J., and Adams, C. E., 1988b, Modulation of the amino acid control of hepatic proteolysis by caloric deprivation: Two modes of alanine co-regulation, J. Biol Chem. 263:19545–19551.

    CAS  Google Scholar 

  • Mortimore, G. E., Khurana, K. K., and Miotto, G., 1991, Amino acid control of proteolysis in perfused livers of synchronously fed rats, J. Biol. Chem. 266:1021–1028.

    CAS  Google Scholar 

  • Mortimore, G. E., Wert Jr., J. J., Miotto, G., Venerando, R., and Kadowaki, M., 1994, Leucine-specific binding of photoreactive Leu7-MAP to a high molecular weight protein on the plasma membrane of the isolated rat hepatocyte, Biochem. Biophys. Res. Commun. 203:200–208.

    Article  CAS  Google Scholar 

  • Neely, A. N., Nelson, P. B., and Mortimore, G. E., 1974, Osmotic alterations of the lysosomal system during rat liver perfusion: Reversible suppression by insulin and amino acids, Biochim. Biophys. Acta 338:458–472.

    Article  CAS  Google Scholar 

  • Neely, A. N., Cox, J. R., Fortney, J. A., Schworer, C. M., and Mortimore, G. E., 1977, Alterations of lysosomal size and density during rat liver perfusion. Suppression by insulin and amino acids, J. Biol Chem. 252:6948–6954.

    CAS  Google Scholar 

  • Nishimura, M., and Beevers, H., 1979, Hydrolysis of protein in vacuoles isolated from higher plant tissue, Nature 277:412–413.

    Article  CAS  Google Scholar 

  • Novikoff, A. B., and Shin, W. Y., 1978, Endoplasmic reticulum and autophagy in rat hepatocytes, Proc. Natl. Acad. Sci. USA 75:5039–5042.

    Article  CAS  Google Scholar 

  • Ogier-Denis, E., Couvineau, A., Maoret, J. J., Houri, J. J., Bauvy, C., De Stefanis, D., Isidoro, C., Laburthe, M., and Codogno, P., 1995, A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29, J. Biol. Chem. 270:13–16.

    Article  CAS  Google Scholar 

  • Paavola, L. G., 1978a, The corpus luteum of the guinea pig. II. Cytochemical studies on the Golgi complex, GERL, and lysosomes in luteal cells during maximal progesterone secretion, J. Cell Biol. 79:45–58.

    Article  CAS  Google Scholar 

  • Paavola, L. G., 1978b, The corpus luteum of the guinea pig. III. Cytochemical studies on the Golgi complex and GERL during normal postpartum regression of luteal cells, emphasizing the origin of lysosomes and autophagic vacuoles, J. Cell Biol. 79:59–73.

    Article  CAS  Google Scholar 

  • Papadopoulos, T., and Pfeifer, U., 1986, Regression of rat liver autophagic vacuoles by locally applied cycloheximide, Lab. Invest. 54:100–107.

    CAS  Google Scholar 

  • Pfeifer, U., 1973, Cellular autophagy and cell atrophy in rat liver during long-term starvation, Virchows Arch. B 12:195–211.

    Google Scholar 

  • Pfeifer, U., 1978, Inhibition by insulin of the formation of autophagic vacuoles in rat liver. A mor-phometric approach to the kinetics of intracellular degradation by autophagy, J. Cell Biol. 78: 152–167.

    Article  CAS  Google Scholar 

  • Pfeifer, U., 1981, Morphological aspects of intracellular protein degradation: Autophagy, Acta Biol. Med. Ger. 40:1619–1624.

    CAS  Google Scholar 

  • Plomp, P. J., Gordon, P. B., Meijer, A. J., Hoyvik, H., and Seglen, P. O., 1989, Energy dependence of different steps in the autophagic-lysosomal pathway, J. Biol. Chem. 264:6699–6704.

    CAS  Google Scholar 

  • Poli, A., Gordon, P. B., Schwarze, P. E., Grinde, B., and Seglen, P. O., 1981, Effect of insulin and anchorage on hepatocytic protein metabolism and amino acid transport, J. Cell Sci. 48:1–18.

    CAS  Google Scholar 

  • Poole, B., and Wibo, M., 1973, Protein degradation in cultured cells, J. Biol. Chem. 248:6221–6226.

    CAS  Google Scholar 

  • Püsü, A. R., and Mortimore, G. E., 1984, Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver, Proc. Natl. Acad. Sci. USA 81:4270–4274.

    Article  Google Scholar 

  • Püsü, A. R., Schworer, C. M., and Mortimore, G. M., 1982a, Acceleration of proteolysis in perfused rat liver by deletion of glucogenic amino acids: Regulatory role of glutamine, Biochem. Biophys. Res. Commun. 107:1433–1439.

    Article  Google Scholar 

  • Püsü, A. R., Wert Jr., J. J., and Mortimore, G. E., 1982b, Multi-functional control by amino acids of deprivation-induced proteolysis in liver: Role of leucine, J. Biol. Chem. 257:12114–12120.

    Google Scholar 

  • Punnonen, E. L., Autio, S., Kaija, H., and Reunanen, H., 1993, Autophagic vacuoles fuse with the prelysosomal compartment in cultured rat fibroblasts, Eur. J. Cell Biol. 6:54–66.

    Google Scholar 

  • Rabkin, R., Tsao, T., Shi, J. D., and Mortimore, G., 1991, Amino acids regulate kidney cell protein breakdown, J. Lab. Clin. Med. 117:505–513.

    CAS  Google Scholar 

  • Ranneis, D. E., Kao, R., and Morgan, H. E., 1975, Effect of insulin on protein turnover in heart muscle, J. Biol Chem. 250:1694–1701.

    Google Scholar 

  • Rechsteiner, M., Hoffman, L., and Dubiel, W., 1993, The multicatalytic and 26S proteases, J. Biol. Chem. 268:6065–6068.

    CAS  Google Scholar 

  • Rosa, F., 1971, Ultrastructural changes produced by glucagon, cyclic 3′5′AMP and epinephrine on perfused rat livers, J. Ultrastruct. Res. 34:205–213.

    Article  CAS  Google Scholar 

  • Schwartz, A. L., Brandt, R. A., Geuze, H. J., and Ciechanover, A., 1992, Stress induced alteration in the autophagic pathway: Relationship to ubiquitin system, Am. J. Physiol. 262:C1031–C1038.

    CAS  Google Scholar 

  • Schworer, C. M., and Mortimore, G. M., 1979, Glucagon-induced autophagy and proteolysis in rat liver: Mediation by selective deprivation of intracellular amino acids, Proc. Natl. Acad. Sci. USA 76:3169–3173.

    Article  CAS  Google Scholar 

  • Schworer, C. M., Shiffer, K. A., and Mortimore, G. E., 1981, Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver, J. Biol. Chem. 256:7652–7658.

    CAS  Google Scholar 

  • Seglen, P. O., and Gordon, P. B., 1982, 3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes, rProc. Natl. Acad. Sci. USA 79:1889–1892.

    Article  CAS  Google Scholar 

  • Seglen, P. O., and Solheim, A. E., 1978, Valine uptake and incorporation into protein in isolated rat hepatocytes. Nature of the precursor pool for protein synthesis, Eur. J. Biochem. 85:15–25.

    Article  CAS  Google Scholar 

  • Seglen, P. O., Gordon, P. B., and Poli, A., 1980, Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes, Biochim. Biophys. Acta 630:103–118.

    Article  CAS  Google Scholar 

  • Shiman, R., Mortimore, G. E., Schworer, C. M., and Gray, D. W., 1982, Regulation of phenylalanine hydroxylase activity by phenylalanine in vivo, in vitro, and in perfused rat liver, J. Biol. Chem. 257:11213–11216.

    CAS  Google Scholar 

  • Solheim, A. E., and Seglen, P. O., 1980, Subcellular distribution of proteolytically generated valine in isolated rat hepatocytes, Eur. J. Biochem. 107:587–596.

    Article  CAS  Google Scholar 

  • Sommercorn, J. M., and Swick, R. W., 1981, Protein degradation in primary monolayer cultures of adult rat hepatocytes, J. Biol Chem. 256:4816–4821.

    CAS  Google Scholar 

  • Surmacz, C. A., Wert Jr., J. J., and Mortimore, G. E., 1983a, Role of particle interaction on distribution of liver lysosomes in colloidal silica, Am. J. Physiol. 245:C52–C60.

    CAS  Google Scholar 

  • Surmacz, C. A., Wert Jr., J. J., and Mortimore, G. E., 1983b, Metabolic alterations and distribution of rat liver lysosomes in colloidal silica, Am. J. Physiol. 245:C61–C67.

    CAS  Google Scholar 

  • Surmacz, C. A., Püsü, A. R., and Mortimore, G. E., 1987, Regulation of lysosomal fusion during deprivation-induced autophagy in perfused rat liver, Biochem. J. 242:453–458.

    CAS  Google Scholar 

  • Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y., 1992, Autophagy in yeast demonstrated with protease-deficient mutants and conditions for its induction, J. Cell Biol. 19:301–311.

    Article  Google Scholar 

  • Tarn, J. P., 1989, High-density multiple antigenic-peptide system for preparation of antipeptide antibodies, in Methods in Enzymology, Vol. 168 (P. M. Conn, ed.), pp. 7–15, Academic Press, New York/London.

    Google Scholar 

  • Tischler, M. E., Desautels, M., and Goldberg, A. L., 1982, Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in rat skeletal and cardiac muscle? J. Biol. Chem. 257:1613–1621.

    CAS  Google Scholar 

  • Tooze, J., Hollinshead, M., Ludwig, T., Howell, K., Hoflack, B., and Kern, H., 1990, In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome, J. Cell Biol. 111:329–345.

    Article  CAS  Google Scholar 

  • Tsao, T. C., Shi, J. D., Mortimore, G. E., Cragoe Jr., E. J., and Rabkin, R., 1990, Modulation of kidney cell protein degradation by insulin, J. Lab. Clin. Med. 116:369–376.

    CAS  Google Scholar 

  • Vandenburgh, H., and Kaufman, S., 1980, Protein degradation in embryonic skeletal muscle. Effects of medium, cell type, inhibitors, and passive stretch, J. Biol Chem. 255:5826–5833.

    CAS  Google Scholar 

  • Venerando, R., Miotto, G., Kadowaki, M., Siliprandi, N., and Mortimore, G. E., 1994, Multiphasic control of proteolysis by leucine and alanine in the isolated rat hepatocyte, Am. J. Physiol. 266: C455-C461.

    Google Scholar 

  • Ward, W. F., Cox, J. R., and Mortimore, G. E., 1977, Lysosomal sequestration of intracellular protein as a regulatory step in hepatic proteolysis, J. Biol. Chem. 252:6955–6961.

    CAS  Google Scholar 

  • Wert, Jr., J. J., Miotto, G., Kadowaki, M., and Mortimore, G. E., 1992, 4-Amino-6-methylhept-2-enoic acid: A leucine analogue and potential probe for localizing sites of proteolytic control in the hepatocyte, Biochem. Biophys. Res. Commun. 186:1327–1332.

    Article  CAS  Google Scholar 

  • Wheatley, D. N., 1984, Intracellular protein degradation: Basis of a self-regulating mechanism for the proteolysis of endogenous proteins, J. Theor. Biol. 107:127–149.

    Article  CAS  Google Scholar 

  • Woodside, K. H., and Mortimore, G. E., 1972, Suppression of protein turnover by amino acids in the perfused rat liver, J. Biol. Chem. 247:6474–6481.

    CAS  Google Scholar 

  • Woodside, K. H., Ward, W. F., and Mortimore, G. E., 1974, Effects of glucagon on general protein degradation and synthesis in perfused rat liver, J. Biol. Chem. 249:5458–5463.

    CAS  Google Scholar 

  • Yokota, S., 1993, Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate, Eur. J. Cell Biol. 61:67–80.

    CAS  Google Scholar 

  • Young, V. R., and Munro, H. N., 1978, NT-methylhistidine (3-methylhistidine) and muscle protein turnover: An overview, Fed. Proc. Fed. Am. Soc. Exp. Biol. 37:2291–2300.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mortimore, G.E., Miotto, G., Venerando, R., Kadowaki, M. (1996). Autophagy. In: Lloyd, J.B., Mason, R.W. (eds) Biology of the Lysosome. Subcellular Biochemistry, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5833-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5833-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7674-3

  • Online ISBN: 978-1-4615-5833-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics