Skip to main content

Optimal Design Problems

  • Chapter
  • 369 Accesses

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 21))

Abstract

In this Section related problems which arise in the optimal design of structures are formulated as two level optimization problems and are numerically treated by multilevel iterative techniques. Certain classes of optimal material design problems and topology optimization problems formulated by means of the homogenization approach can be treated with this method. This approach can also be used for the rigourous formulation of optimality criteria methods for optimal design of structures. These methods are popular in engineering applications because, roughly speaking, they decompose the difficult optimal design problem into a number of classical structural analysis problems with appropriate, decentralized (at the finite element level) modification rules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtziger, W. and Bendsoe, M. P. (1995). Design for maximal flexibility as a simple computational model of damage. Structural Optimization, 10: 258–268.

    Article  Google Scholar 

  • Al-Fahed, A. and Panagiotopoulos, P. D. (1993). A linear complementarity approach to the articulated multifingered friction gripper. Journal of Robotics Research, 10 (6): 871–887.

    MATH  Google Scholar 

  • Allaire, G., Bonnetier, E., Francfort, G., and Jouve, F. (1997). Shape optimization by the homogenization method. Numerische Mathematik, 76 (l): 27–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Ashby, M. F. (1983). The mechanical properties of cellular solids. Amer. Inst Mech. Eng. Metal. Trans., A 14: 1755–1769.

    Google Scholar 

  • Baier, H., Seefielberg, C., and Specht, B. (1994). Optimierung in der Struk- turmechanik. Vieweg Verlag, Braunschweig, Wiesbaden.

    Google Scholar 

  • Bendsoe, M. P. (1995). Optimization of structural topology, shape and material Springer, Berlin.

    Google Scholar 

  • Bendsoe, M. P. and Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71: 197–224.

    Article  MathSciNet  Google Scholar 

  • Diaz, A. and Sigmund, O. (1995). Checkerboard patterns in layout optimization. Structural Optimization, 10: 40–45.

    Article  Google Scholar 

  • Gea, H. C. (1996). Topology optimization: a new microstructure based design domain method. Computers and Structures, 61: 781–788.

    Article  MathSciNet  MATH  Google Scholar 

  • Gibson, L. J. and Ashby, M. F. (1982). The mechanics of two-dimensional cellular materials. Proc. Royal Society London, A382: 43–59.

    Article  MATH  Google Scholar 

  • Haslinger, J. and Neittaanmaki, P. (1988). Finite element approximation for optimal shape design. Theory and applications. J. Wiley and Sons, Chichester.

    Google Scholar 

  • Haslinger, J. and Neittaanmaki, P. (1996). Finite element approximation for optimal shape, material and topology design. J. Wiley and Sons, Chichester. ( 2nd edition ).

    Google Scholar 

  • Jog, C. S., Haber, R. B., and Bendsoe, M. P. (1994). Topology design with optimized, self-adaptive materials. Computer Methods in Applied Mechanics and Engineering, 37: 1323–1350.

    MathSciNet  MATH  Google Scholar 

  • Kocvara, M. and Outrata, J. V. (1996). A nonsmooth approach to optimization problems with equilibrium constraints. Universitat Erlangen-Niirnberg, In- stitut fur Angewandte Mathematik, Erlangen-Niirnberg Germany. Preprint No. 175.

    Google Scholar 

  • Koiter, W. (1964). Couple-stresses in the theory of elasticity. Proc. K. Ned. Akad., Wet., 67: 17.

    MATH  Google Scholar 

  • Krizek, M. and Neitaanmaki, P. (1990). Finite element approximation of variational problems and applications. Longman Scientific and Technical, Essex U.K.

    MATH  Google Scholar 

  • Luo, Z. Q., Pang, J. S., and Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Makela, M. M. and Neittaanmaki, P. (1992). Nonsmooth optimization: analysis and algorithms with applications to optimal control Word Scientific Publ. Co.

    Google Scholar 

  • Mlejnek, H. P. (1992). Some aspects of the genesis of structures. Structural Optimization, 5: 64–69.

    Article  Google Scholar 

  • Mlejnek, H. P. and Schirrmacher, R. (1993). An engineers approach to optimal material distribution and shape finding. Computer Methods in Applied Mechanics and Engineering, 106: 1–2.

    Article  MATH  Google Scholar 

  • Niklas, K. (1992). Plant Biomechanics. An engineering approach to plant form and function. The University of Chicago Press, Chicago and London.

    Google Scholar 

  • Panagiotopoulos, P. D. (1976). Subdifferentials and optimal control in unilateral elasticity. Mechanics Research Communication, 3: 91–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Panagiotopoulos, P. D. (1977). Optimal control in the unilateral thin plate theory. Archives of Mechanics, 29: 25–39.

    MathSciNet  MATH  Google Scholar 

  • Panagiotopoulos, P. D. (1980). Optimal control in the theory of the unilateral von-Karman plates. In Proc. IUTAM Conf. 1978 on Variational Methods in Mechanics of Solids, pages 344–348. Pergamon, Evanston Illinois.

    Google Scholar 

  • Panagiotopoulos, P. D. (1983). Optimal control and parameter identification of structures with convex and non-convex strain energy density. Applications in elastoplasticity and to contact problems. Solid Mechanics Archives, 8: 160–183.

    MathSciNet  Google Scholar 

  • Panagiotopoulos, P. D. and Haslinger, J. (1992). Optimal control and identification of structures involving multivalued nonmonotonicities. Existence and approximation results. European Journal of Mechanics A/Solids, 11 (4): 4240–4450.

    MathSciNet  Google Scholar 

  • Panagiotopoulos, P. D., Stavroulakis, G. E., Mistakidis, E. S., and Panagouli, O. K. (1997). Multilevel algorithms for structural analysis problems. In Migdalas, A., Pardalos, P., and Varbrand, P., editors, Multilevel Optimization: Algorithms and Applications, Dordrecht Boston. Kluwer Academic, (to appear).

    Google Scholar 

  • Prager, W. and Taylor, J. E. (1968). Problems of optimal structural design. Journal of Applied Mechanics, 35: 102–106.

    Article  MATH  Google Scholar 

  • Rozvany, G. I. N. (1989). Structural design via optimality criteria. The Prager approach to structural optimization. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Rozvany, G. I. N., Bendsoe, M. P., and Kirsch, U. (1995). Layout optimization of structures. Applied Mechanics Review, 48 (2): 41–119.

    Article  Google Scholar 

  • Sigmund, O. (1994). Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids and Structures, 31 (17): 2313–2329.

    Article  MathSciNet  MATH  Google Scholar 

  • Stavroulakis, G. E. (1995a). Optimal prestress of cracked unilateral structures: finite element analysis of an optimal control problem for variational inequalities. Computer Methods in Applied Mechanics and Engineering, 123: 231–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Stavroulakis, G. E. (1995b). Optimal prestress of structures with frictional unilateral contact interfaces. Archives of Mechanics (Ing. Archiv), 66: 71–81.

    MATH  Google Scholar 

  • Stavroulakis, G. E. and Giinzel, H. (1997). Optimal structural design in nons- mooth mechanics. In Migdalas, A., Pardalos, P., and Varbrand, P., editors, Multilevel Optimization: Algorithms and Applications. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Stavroulakis, G. E. and Tzaferopoulos, M. A. (1994). A variational inequality approach to optimal plastic design of structures via the Prager-Rozvany theory. Structural Optimization, 7 (3): 160–169.

    Article  Google Scholar 

  • Tanaka, M., Adachi, T., and Tomita, Y. (1996). Mechanical remodeling of bone structure considering residual stress. JSME Intern. Journal, A 39 (3): 297–305.

    Google Scholar 

  • Theocaris, P. S. (1987). The mesophase concept in composites. Springer Verlag, Berl in Heidelberg.

    Book  Google Scholar 

  • Theocaris, P. S. and Stavroulakis, G. E. (1997a). The effective elastic moduli of plane-weave woven fabric composites by numerical homogenization. Journal of Reinforced Plastics and Composites, (to appear).

    Google Scholar 

  • Theocaris, P. S. and Stavroulakis, G. E. (1997b). Multilevel iterative optimal design of composite structures, including materials with negative Poisson’s ratio. Structural Optimization, (to appear).

    Google Scholar 

  • Theocaris, P. S., Stavroulakis, G. E., and Panagiotopoulos, P. D. (1997a). Calculation of effective transverse elastic moduli of fiber-reinforced composites by numerical homogenization. Composites Science and Technology, 57: 573–586.

    Article  Google Scholar 

  • Theocaris, P. S., Stavroulakis, G. E., and Panagiotopoulos, P. D. (1997b). Negative Poisson’s ratio in materials with a star-shaped microstructure. A numerical homogenization approach. Archive of Applied Mechanics, 67 (4): 274–286.

    Article  MATH  Google Scholar 

  • Theocaris, P. S. and Varias, A. G. (1986). The influence of the mesophase on the transverse and longitudinal moduli and the major Poisson ratio in fibrous composites. Colloid and Polymer Science, 264: 1–9.

    Article  Google Scholar 

  • Thierauf, G. (1995). Optimal topologies of structures. Homogenization, pseudo- elastic approximation and the bubble-method. Engineering Computation, 13 (1): 86–102.

    Article  MathSciNet  Google Scholar 

  • Tzaferopoulos, M. A. and Stavroulakis, G. E. (1995). Optimal structural design via optimality criteria as a nonsmooth mechanics problem. Computers and Structures, 55 (5): 761–772.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, R. J. and Chuang, C. H. (1994). Optimal topology using linear programming. Computers and Structures, 52: 265–275.

    Article  MATH  Google Scholar 

  • Youn, S. K. and Park, S. H. (1997). A study on the shape extraction process in the structural topology optimization using homogenized material. Computers and Structures, 62 (3): 527–538.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mistakidis, E.S., Stavroulakis, G.E. (1998). Optimal Design Problems. In: Nonconvex Optimization in Mechanics. Nonconvex Optimization and Its Applications, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5829-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5829-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7672-9

  • Online ISBN: 978-1-4615-5829-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics