Skip to main content

Nonconvex Superpotential Problems. Variational and Hemivariational Inequalities

  • Chapter
  • 373 Accesses

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 21))

Abstract

Linearity of the kinematics and of the constitutive relations combined with fairly general material stability assumptions guarantee the convexity of a structural analysis problem in either a potential energy or in a complementary energy formulation, as it has been discussed in details in the previous Chapter. In real life applications some of these assumptions may be violated: kinematic nonlinearity which is indispensable for the description of buckling effects, decohesion, damage and fracture problems which introduce material or interface instabilities and softening behaviour in elastoplasticity are some of the applications which lead to nonconvex problems in mechanics. This is due to the fact that most of the materials used are composite, e.g., concrete with steel, fibre reinforced materials etc. Moreover, the composite nature of the materials may appear also at the micromechanical level, e.g., concrete itself is a composition of stone aggregates and cement paste, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach, J. and Altenbach, H. (1994). Eifuhrung in die Kontinuumsmechanik. B.G. Teubner Verlag, Stuttgart.

    Google Scholar 

  • Argyris, J. H. and et. al. (1974). Recent developments in the finite element analysis of PCRV. Nuclear Engineering, 28: 42–75.

    Google Scholar 

  • Arnold, S. M. and Saleeb, A. F. (1994). On the thermodynamic framework of generalized coupled thermoelastic-viscoplastic-damage modeling. International Journal of Plasticity, 10 (3): 263–278.

    MATH  Google Scholar 

  • Auchmuty, G. (1989). Duality algorithms for nonconvex variational principles. Num. Functional Analysis and Optimization, 10: 211–264.

    MathSciNet  MATH  Google Scholar 

  • Baniotopoulos, C. C. and Panagiotopoulos, P. D. (1987). A hemivariational approach to the analysis of composite material structures. In Paipetis, S. A. and Papanicolaou, G. C., editors, Engineering Applications of New Composites. Omega Publications, London.

    Google Scholar 

  • Bathe, K. J. (1981). Finite element procedures in engineering analysis. Prentice-Hall, New Jersey.

    Google Scholar 

  • Bazant, Z. P. and Cedolin, L. (1991). Stability of structures. Elastic, inelastic, fracture and damage theories. Oxford University Press, New York, Oxford.

    MATH  Google Scholar 

  • Betten, J. (1993). Kontinuumsmechanik. ElastoPlasto- und Kriechmechanik. Springer Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Bjorkman, G. (1991). The solution of large displacement frictionless contact problems using a sequence of linear complementarity problems. International Journal for Numerical Methods in Engineering, 31: 1553–1566.

    MathSciNet  Google Scholar 

  • Bjorkman, G., Klarbring, A., and Sjodin, B. (1995). Sequential quadratic programming for non-liner elastic contact problems. International Journal for Numerical Methods in Engineering, 38: 137–165.

    Google Scholar 

  • Cannmo, P., Runesson, K., and Ristinmaa, M. (1995). Modelling of plasticity and damage in a polycrystalline microstructure. International Journal of Plasticity, ll(8):959–970.

    Google Scholar 

  • Chen, W. F. (1994). Constitutive equations for engineering materials. Vol. 1: Elasticity and modeling. Vol. 2: Plasticity and modeling. Elsevier, Holland.

    Google Scholar 

  • Chung, T. J. (1996). Applied continuum mechanics. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Ciarlet, P. (1983). Lectures on three-dimensional elasticity. Springer Verlag, New York.

    MATH  Google Scholar 

  • Clarke, F. H. (1983). Optimization and nonsmooth analysis. J. Wiley, New York.

    Google Scholar 

  • Comi, C. and Corigliano, A. (1996). On uniqueness of the dynamic finite-step problems in gradient-dependent softening plasticity. International Journal of Solids and Structures, 33 (26): 3881–3902.

    MathSciNet  MATH  Google Scholar 

  • Comi, C., Corigliano, A., and Maier, G. (1992). Dynamic analysis of elastoplas- tic softening discretized structues. ASCE Journal of Engineering Mechanics, 118 (12): 2352–2375.

    Google Scholar 

  • Comi, C. and Perego, U. (1996). A generalized variable formulation for gradient dependent softening plasticity. International Journal for Numerical Methods in Engineering, 39: 3731–3755.

    MATH  Google Scholar 

  • Cook, R. D. (1978). Finite element method. Concepts and applications. J. Wiley, New York.

    Google Scholar 

  • Corigliano, A. (1993). Formulation, identification and use of interface models in the numerical analysis of composite delamination. International Journal of Solids and Structures, 30 (20): 2779–2811.

    MATH  Google Scholar 

  • Crisfield, M. A. (1991). Non-linear finite element analysis of solids and structures. J. Wiley, Chichester.

    Google Scholar 

  • Curnier, A. (1993). Methodes numeriques en mecanique des solides. Presses Polytechniques et Universitaires Romandes, Lausanne. English translation, Kluwer, 1994.

    Google Scholar 

  • Curnier, A., He, Q. C., and Zysset, P. (1995). Conewise linear elastic materials. Journal of Elasticity, 37: 1–38.

    MathSciNet  MATH  Google Scholar 

  • Dem’yanov, V. F., Stavroulakis, G. E., Polyakova, L. N., and Panagiotopoulos, P. D. (1996). Quasidifferentiability and nonsmooth modelling in mechanics, engineering and economics. Kluwer Academic, Dordrecht.

    MATH  Google Scholar 

  • Dem’yanov, V. F. and Vasiliev, L. N. (1985). Nondifferentiable optimization. Optimization Software, New York.

    Google Scholar 

  • Findley, W. N. and Michno, M. J. J. (1987). Concerning cusps and vertices on the yield surface of annealed mild steel. Zeitschrift fur Angewandte Mathe- matik und Mechanik (ZAMM), 67 (7): 309–312.

    Google Scholar 

  • Fosdick, R. and Volkmann, E. (1993). Normality and convexity of the yield surface in nonlinear plasticity. Quarterly of Applied Mathematics, 11 (1): 117–127.

    MathSciNet  Google Scholar 

  • Fremond, M. and Nedjar, B. (1993). Endommagement et principe des puissances virtuelles. C.R. Acad. Sci. Paris Ser. II, 317: 857–864.

    MATH  Google Scholar 

  • Fremond, M. and Nedjar, B. (1995). Damage in concrete: the unilateral phenomenon. Nuclear Engineering and Design, 156 (l2): 323–336.

    Google Scholar 

  • Fremond, M. and Nedjar, B. (1996). Damage, gradient of damage and principle of virtual power. International Journal of Solids and Structures, 33 (8): 1083–1103.

    MathSciNet  MATH  Google Scholar 

  • Galka, A. and Telega, J. J. (1995a). Duality and the complementary energy principle for a class of nonlinear structures. Part I. Five-parameter shell model. Archives of Mechanics, 47 (4): 677–698.

    MathSciNet  MATH  Google Scholar 

  • Galka, A. and Telega, J. J. (1995b). Duality and the complementary energy principle for a class of nonlinear structures. Part II. Anomalous dual variational principles for compressed elastic nonlinear structures. Archives of Mechanics, 47 (4): 699–724.

    MathSciNet  Google Scholar 

  • Gambarotta, L. and Lagomarsino, S. (1997a). Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications. Earthquake Engineering and Structural Dynamics, 26: 423–439.

    Google Scholar 

  • Gambarotta, L. and Lagomarsino, S. (1997b). Damage models for the seismic response of brick masonry shear walls. Part II: The continuum model and its applications. Earthquake Engineering and Structural Dynamics, 26: 441–462.

    Google Scholar 

  • Gao, D. Y. (1996). Complementary finite-element method for finite deformation nonsmooth mechanics. Journal of Engineering Mathematics, 30: 339–353.

    MathSciNet  MATH  Google Scholar 

  • Gao, Y. (1992). Global extremum criteria for nonlinear elasticity. Zeitschrift fur Angew. Mathematik und Physik (ZAMP), 43: 742–755.

    Google Scholar 

  • Gao, Y. and Strang, G. (1989a). Dual externum principles in finite deformation elastoplastic analysis. Acta Applicande Mathematica, 17: 257–267.

    MathSciNet  MATH  Google Scholar 

  • Gao, Y. and Strang, G. (1989b). Geometric nonlinearity: potential energy, complementary energy and the gap function. Quarterly of Applied Mathematics, 47: 487–504.

    MathSciNet  MATH  Google Scholar 

  • Ghosh, S. (1992). Arbitrary Lagrangian-Eulerian finite element analysis of large deformation in contact bodies. International Journal of Numerical Methods in Engineering, 33: 1891–1925.

    MATH  Google Scholar 

  • Givoli, D. and Doukhovni, I. (1996). Finite element-quadratic programming approach for contact problems with geometrical nonlinearity. Computers and Structures, 61 (1): 31–41.

    MATH  Google Scholar 

  • Glocker, C. (1995). Dynamik von Starrkorpersystemen mit Reibung und Stofien. VDI Fortschritt-Berichte, Diisseldorf. PhD Thesis, Technical University of Munich 1995.

    Google Scholar 

  • Goeleven, D. (1995). On the hemivariational inequality approach to nonconvex constrained problems in the theory of von Karman plates. Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 75 (11): 861–866.

    MathSciNet  MATH  Google Scholar 

  • Goeleven, D. (1997). A bifurcation theory for nonconvex unilateral laminated plate problem formulated as a hemivariational inequality involving a potential operator. Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 77 (1): 45–51.

    MathSciNet  MATH  Google Scholar 

  • Green, A. E. and Naghdi, P. M. (1965). A general theory of an elastic plastic coninuum. Archive of Rational Mechanics and Analysis, 18: 251–281.

    MathSciNet  MATH  Google Scholar 

  • Hill, R. (1979). Theoretical plasticity of textured aggregates. Mathematical Proceedings of Cambridge Philosophical Society, 85: 179–191.

    MATH  Google Scholar 

  • Hill, R. (1987). Constitutive dual potentials in classical plasticity. Journal of Mechanics and Physics of Solids, 3: 23–33.

    Google Scholar 

  • Hill, R. and Rice, J. R. (1973). Elastic potentials and structure of inelastic constitutive laws. SIAM Journal of Applied Mathematics, 25: 448–461.

    MathSciNet  MATH  Google Scholar 

  • Horst, R., Pardalos, P. M., and Thoai, N. Y. (1995). Introduction to global optimization. Kluwer Academic, Dordrecht Boston.

    MATH  Google Scholar 

  • Ionescu, J. R. and Paumier, J. C. (1994). On the contact problem with slip rate dependent friction in elastodynamics. European Journal of Mechanics A/Solids, 13 (4): 555–568.

    MathSciNet  MATH  Google Scholar 

  • Johnson, A. R. and Quigley, C. J. (1989). Frictionless geometrically non-linear contact using quadratic programming. International Journal for Numerical Methods in Engineering, 28: 127–144.

    MATH  Google Scholar 

  • Justusson, J. W. and Phillips, A. (1966). Stability and convexity in plasticity. Acta Mechanica, 2: 251–267.

    Google Scholar 

  • Khan, A. S. and Juang, S. (1995). Continuum theory of plasticity. J. Wiley and Sons, Inc., Chichester.

    Google Scholar 

  • Kim, S. J. and Oden, J. T. (1984). Generalized potentials in finite elastoplas- ticity. Part I. International Journal of Engineering Sciences, 22: 1235–1257.

    MathSciNet  MATH  Google Scholar 

  • Kim, S. J. and Oden, J. T. (1985). Generalized potentials in finite elastoplas- ticity. Part II. International Journal of Engineering Sciences, 23: 515–530.

    MathSciNet  MATH  Google Scholar 

  • Klarbring, A. (1995). Large displacement frictional contact: a continuum framework for finite element discretization. European Journal of Mechanics A/Solids, 14: 237–253.

    MathSciNet  MATH  Google Scholar 

  • Koltsakis, E. K., Mistakidis, E. S., and Tzaferopoulos, M. A. (1995). On the numerical treatment of nonconvex energy problems of mechanics. Journal of Global Optimization, 6 (4): 427–448.

    MathSciNet  MATH  Google Scholar 

  • Kuczma, M. S. and Stein, E. (1994). On nonconvex problems in the theory of plasticity. Archivum Mechanicky, 46 (4): 603–627.

    MathSciNet  Google Scholar 

  • Ladeveze, P. (1995). A damage computational approach for composites: basic aspects and micromechanical relations. Computational Mechanics, 17: 142–150.

    MATH  Google Scholar 

  • Lemaitre, J. (1992). A course on damage mechanics. Springer Verlag, Berl in Heidelberg.

    MATH  Google Scholar 

  • Lemaitre, J. and Chaboche, J. L. (1985). Mecanique des materiaux solides. Dunod, Paris. English Translation Cambridge Univ. Press 1994.

    Google Scholar 

  • Lin, F. B. and Bazant, Z. P. (1986). Convexity of smooth yield surface of frictional material. ASCE Journal of Engineering Mechanics, 112 (11): 1259–1262.

    Google Scholar 

  • Lochegnies, D. and Oudin, J. (1995). External penalized mixed functional algorithms for unilateral contact and friction in a large strain finite element framework. Engineering Computations, 12: 307–331.

    MathSciNet  MATH  Google Scholar 

  • Lubarda, V. A. and Krajcinovic, D. (1995). Some fundamental issues in rate theory of damage-elastoplasticity. International Journal of Plasticity, 11 (7): 763–797.

    MATH  Google Scholar 

  • Lubliner, L. (1990). Plasticity theory. Macmillan Publ., New York, London.

    MATH  Google Scholar 

  • Maier, G. and Perego, U. (1992). Effects of softening in elastic-plastic structural dynamics. International Journal for Numerical Methods in Engineering, 34: 319–347.

    MATH  Google Scholar 

  • Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Prentice-Hall Inc., Englewood Cliffs, N.Jersey.

    Google Scholar 

  • Marsden, J. E. and Hughes, T. J. R. (1983). Mathematical foundations of elasticity. Prentice-Hall, N.J.

    MATH  Google Scholar 

  • Miettinen, M. (1993). Approximation of hemivariational inequalities and optimal control problems. University of Jyvaskyla, Department of Mathematics, Jyvaskyla Finnland. PhD Thesis, Report No. 59.

    Google Scholar 

  • Miettinen, M. (1995). On constrained hemivariational inequalities and their approximation. Applicable Analysis, 56: 303–326.

    MathSciNet  MATH  Google Scholar 

  • Mistakidis, E. S., Baniotopoulos, C. C., and Panagiotopoulos, P. D. (1995). On the numerical treatment of the delamination problem in laminated composites under cleavage loading. Composite Structures, 30: 453–466.

    Google Scholar 

  • Mistakidis, E. S. and Panagiotopoulos, P. D. (1993). Numerical treatment of nonmonotone (zig-zag) friction and adhesive contact problems with debond- ing. Approximation by monotone subproblems. Computers and Structures, 47: 33–46.

    MATH  Google Scholar 

  • Mistakidis, E. S. and Panagiotopoulos, P. D. (1994). On the approximation of nonmonotone multivalued problems by monotone subproblems. Computer Methods in Applied Mechanics and Engineering, 114: 55–76.

    MathSciNet  Google Scholar 

  • Mistakidis, E. S. and Panagiotopoulos, P. D. (1997). On the search for sub- stationarity points in the unilateral contact problems with nonmonotone friction. J. of Math, and Comp. Modelling, (to appear).

    Google Scholar 

  • Moreau, J. J. and Panagiotopoulos, P. D., editors (1988). Nonsmooth mechanics and applications, volume 302 of CISM Lect. Notes. Springer, Wien-New York.

    Google Scholar 

  • Moreau, J. J., Panagiotopoulos, P. D., and Strang, G., editors (1988). Topics in nonsmooth mechanics. Birkhauser, Basel-Boston.

    MATH  Google Scholar 

  • Motreanu, D. and Panagiotopoulos, P. D. (1993). Hysteresis: the eigenvalue problem for hemivariational inequalities. In Visintin, A., editor, Moldels of hysteresis, pages 102–117. Longman Scientific and Technical, New York.

    Google Scholar 

  • Motreanu, D. and Panagiotopoulos, P. D. (1995). An eigenvalue problem for a hemivariational inequality involving a nonlinear compact operator. Set Valued Analysis, 3: 157–166.

    MathSciNet  MATH  Google Scholar 

  • Nadai, A. (1963). Theory of flow and fracture of solids. Vol. II. McGraw Hill, New York.

    Google Scholar 

  • Naniewicz, Z. (1989). On some nonconvex variational problems related to hemivariational inequalities. Nonlin. Anal., 13: 87–100.

    MathSciNet  MATH  Google Scholar 

  • Naniewicz, Z. (1994a). Hemivariational inequalities with functions fulfilling directional growth condition. Applicable Analysis, 55: 259–285.

    MathSciNet  MATH  Google Scholar 

  • Naniewicz, Z. (1994b). Hemivariational inequality approach to constrained problems for star-shaped admissible sets. Journal of Optimization Theory and Applications, 83 (1): 97–112.

    MathSciNet  MATH  Google Scholar 

  • Naniewicz, Z. (1995). Hemivariational inequalities with functional which are not locally Lipschitz. Nonlinear Analysis, 25 (12): 1307–1320.

    MathSciNet  MATH  Google Scholar 

  • Naniewicz, Z. and Panagiotopoulos, P. D. (1995). Mathematical theory of hemivariational inequalities and applications. Marcel Dekker.

    Google Scholar 

  • Nemat-Nasser, S. (1992). Phenomenological theories of elastoplasticity and localization at high strain rates. Applied Mechanics Review, 45 (3): S19–S45.

    MathSciNet  Google Scholar 

  • Panagiotopoulos, P. D. (1975). A nonlinear programming approach to the unilateral contact and friction boundary value problem in the theory of elasticity. Ing. Archiv, 44: 421–432.

    MathSciNet  MATH  Google Scholar 

  • Panagiotopoulos, P. D. (1983). Nonconvex energy functions. Hemivariational inequalities and substationary principles. Acta Mechanica, 42: 160–183.

    MathSciNet  Google Scholar 

  • Panagiotopoulos, P. D. (1985). Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhauser, Basel-Boston-Stuttgart. Russian translation, MIR Publ., Moscow 1988.

    Google Scholar 

  • Panagiotopoulos, P. D. (1993). Hemivariational inequalities. Applications in mechanics and engineering. Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Panagiotopoulos, P. D. and Koltsakis, E. K. (1987a). Hemivariational inequalities in linear and nonlinear elasticity. Meccanica, 22: 65–75.

    MathSciNet  MATH  Google Scholar 

  • Panagiotopoulos, P. D. and Koltsakis, E. K. (1987b). Interlayer slip and de- lamination effects: a hemivariational inequality approach. Trans. Canadian Society of Mechanical Engineering, 11 (1): 43–52.

    Google Scholar 

  • Panagiotopoulos, P. D., Panagouli, 0. K., and Mistakidis, E. S. (1993). Fractal geometry and fractal material behaviour in solids and structures. Archive of Applied Mechanics, 63: 1–24.

    MATH  Google Scholar 

  • Panagiotopoulos, P. D. and Stavroulakis, G. E. (1992). New types of variational principles based on the notion of quasidifferentiability. Acta Mechanica, 94: 171–194.

    MathSciNet  MATH  Google Scholar 

  • Pilkey, W. D. and Wunderlich, W. (1994). Mechanics of structures. Variational and computational methods. CRC Press, Boca Raton.

    Google Scholar 

  • Rabinowicz, E. (1959). A study of stick-slip processes. In Daview, R., editor, Friction and wear, pages 149–161. Elsevier, London.

    Google Scholar 

  • Rockafellar, R. T. (1970). Convex analysis. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Rockafellar, R. T. (1979). La theorie des sous-gradients et ses applications a V optimization. Fonctions convexes et non-convexes. Les Presses de V Univer- site de Montreal, Montreal.

    Google Scholar 

  • Rohde, A. and Stavroulakis, G. E. (1995). Path following energy optimization in unilateral contact problems. Journal of Global Optimization, 6 (4): 347–365.

    MathSciNet  MATH  Google Scholar 

  • Rohde, A. and Stavroulakis, G. E. (1997). Genericity analysis for path-following methods in unilateral contact elastostatics. Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 77(6):(to appear).

    Google Scholar 

  • Rubinov, A. M. and Yagubov, A. A. (1986). The space of star-shaped sets and its applications in nonsmooth optimization. Mathematical Programming Study, 29: 176–202.

    MathSciNet  MATH  Google Scholar 

  • Salengon, J. and Tristan-Lopez, A. (1980). Analyse de la stailite des talus en sols coherents anisotropes. C.R. Acad. Sci. Paris, 290B: 493–496.

    Google Scholar 

  • Simo, J. C. and Ju, J. W. (1987a). Strain- and stress-based continuum damage models. I. Formulation. International Journal of Solids and Structures, 23 (7): 821–840.

    MATH  Google Scholar 

  • Simo, J. C. and Ju, J. W. (1987b). Strain- and stress-based continuum damage models. II. Computational aspects. International Journal of Solids and Structures, 23 (7): 841–869.

    MATH  Google Scholar 

  • Stavroulakis, G. E. (1993). Convex decomposition for nonconvex energy problems in elastostatics and applications. European Journal of Mechanics A/Solids, 12 (1): 1–20.

    MathSciNet  MATH  Google Scholar 

  • Stavroulakis, G. E. (1995a). Quasidifferentiability and star-shaped sets. Application in nonconvex, finite dimensional elastoplasticity. Communications on Applied Nonlinear Analysis, 2 (3): 23–46.

    MathSciNet  MATH  Google Scholar 

  • Stavroulakis, G. E. (1995b). Variational problems for nonconvex elastoplasticity based on the quasidifferentiability concept. In Theocaris, P. S. and Gdoutos, E. E., editors, Proc. 4th Greek Nat. Congress on Mechanics, pages 527–534.

    Google Scholar 

  • Stavroulakis, G. E., Demyanov, V. F., and Polyakova, L. N. (1995). Quasidifferentiability in mechanics. Journal of Global Optimization, 6 (4): 327–345.

    MathSciNet  MATH  Google Scholar 

  • Stavroulakis, G. E. and Mistakidis, E. S. (1995). Numerical treatment of hemivariational inequalities. Computational Mechanics, 16: 406–416.

    MathSciNet  MATH  Google Scholar 

  • Stavroulakis, G. E. and Panagiotopoulos, P. D. (1993). Convex multilevel decomposition algorithms for non-monotone problems. Int. J. Num. Meth. En- gng., 36: 1945–1966.

    MathSciNet  MATH  Google Scholar 

  • Stavroulakis, G. E. and Rohde, A. (1996). Stability of structures with quasidifferentiable energy functions. In Sotiropoulos, D. and Beskos, D., editors, 2nd Greek Conf. on Computational Mechanics, pages 406–413, Chania.

    Google Scholar 

  • Stein, E., Wagner, W., and Wriggers, P. (1989). Grundlagen nichtlinearer Berech- nungsverfahren in der Strukturmechanik. In Stein, E., editor, Nichtlineare Berechnungen im Konstruktiven Ingenieurbau, pages 1–53. Springer, Wien-New York.

    Google Scholar 

  • Stuart, C. A. and Toland, J. F. (1980). A variational method for boundary value problems with discontinuous nonlinearities. J. London Math. Soc., 21: 319–328.

    MathSciNet  MATH  Google Scholar 

  • Sun, S. M. and Natori, M. C. (1996). Numerical solution of large deformation problems involving stability and unilateral constraints. Computers and Structures, 58 (6): 1245–1260.

    MATH  Google Scholar 

  • Toland, J. F. (1979). A duality principle for nonconvex optimization and the calculus of variations. Arch. Rat. Mech. Analysis, 71: 41–61.

    MathSciNet  MATH  Google Scholar 

  • Tzaferopoulos, M. A., Mistakidis, E. S., Bisbos, C. D., and Panagiotopoulos, P. D. (1995). Comparison of two methods for the solution of a class of non- convex energy problems using convex minimization algorithms. Computers and Structures, 57 (6): 959–971.

    MathSciNet  MATH  Google Scholar 

  • Tzaferopoulos, M. A. and Panagiotopoulos, P. D. (1993). Delamination of composites as a substationarity problem: Numerical approximation and algorithms. Computer Methods in Applied Mechanics and Engineering, 110 (12): 63–86.

    MathSciNet  MATH  Google Scholar 

  • Tzaferopoulos, M. A. and Panagiotopoulos, P. D. (1994). A numerical method for a class of hemivariational inequalities. Computational Mechanics, 15: 233–248.

    MathSciNet  MATH  Google Scholar 

  • Visintin, A. (1994). Differential models of hysteresis. Springer Verlag, Berl in Heidelberg.

    MATH  Google Scholar 

  • Wriggers, P., Vu, V. T., and Stein, E. (1990). Finite element formulation of large deformation impact-contact problems. Computers and Structures, 37: 319–331.

    MATH  Google Scholar 

  • Zeidler, E. (1988). Nonlinear functional analysis and its applications. I V: Applications to mathematical physics. Springer Verlag, New York-Heidelberg.

    MATH  Google Scholar 

  • Zhu, C. and Jin, Y. (1994). The solution of frictional contact problems using a finite element-mathematical programming method. Computers and Structures, 52: 149–155.

    MATH  Google Scholar 

  • Zhu, Y., Dodd, B., Caddel, R. M., and Hosford, W. (1987). Convexity restrictions on non-quadratic anisotropic yield criteria. International Journal of Mechanical Sciences, 29 (10): 733–741.

    MATH  Google Scholar 

  • Zienkiewicz, O. C. and Taylor, R. L. (1991). The finite element method. Vol. II: Solid and fluid mechanics, dynamics and non-linearity. McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mistakidis, E.S., Stavroulakis, G.E. (1998). Nonconvex Superpotential Problems. Variational and Hemivariational Inequalities. In: Nonconvex Optimization in Mechanics. Nonconvex Optimization and Its Applications, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5829-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5829-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7672-9

  • Online ISBN: 978-1-4615-5829-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics