Skip to main content

Starter cultures for the dairy industry

  • Chapter

Abstract

Starter cultures are an essential component of all fermented dairy foods including cheese, yoghurt, sour cream and lactic butter. The primary function of these bacteria is the conversion of lactose and other sugars in milk to lactic acid. This acidification contributes to a preservative effect with the result that many pathogenic and spoilage bacteria are inhibited. The associated drop in pH also results in the loss of water from the curd as whey. In addition, starters are responsible for the production of a variety of secondary metabolites, including a number of compounds which are necessary for flavour development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benson, K. K. et al. (1996) Effect of ilvBN-encoded acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl. Microbiol. Biotechnol. 45, 107–111.

    Article  CAS  Google Scholar 

  • Commission Directive 94/51/EC of 7 November 1994 adapting to technical progress Council Directive 90/219/EEC on the contained use of genetically modified micro-organisms. Official Journal of the European Communities, L297, 18/11/94, p. 29.

    Google Scholar 

  • Commission Directive 94/51/EC of 15 April 1994 adapting to technical progress for the first time Council Directive 90/220/EEC on the deliberate release into the environment of genetically modified micro-organisms. Official Journal of the European Communities, L103, 22/4/94, p. 20.

    Google Scholar 

  • Davidson, B. E., Kordias, N. et al. (1996) Genomic organisation of lactic acid bacteria. Antonie van Leeuwenhoek 70, 161–183.

    Article  CAS  Google Scholar 

  • De Vos, W.M. (1996) Metabolic engineering of sugar metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 70, 223–242.

    Article  Google Scholar 

  • Economides, I. (ed.). (1991) Biotechnology R and D in the EC. 28–29.

    Google Scholar 

  • Froseth, B. R. and McKay, L. L. (1991) Molecular characterisation of the nisin resistance region of Lactococcus lactis subsp. lactis biovar. diacetylactis DRC3. Appl. Environ. Microbiol. 57, 804–811.

    CAS  Google Scholar 

  • Garvey, P., van Sinderen, D., et al. (1995) Molecular genetics of bacteriophage and natural phage defence systems in the genus Lactococcus. Int. Dairy Journal. 5, 905–917.

    Article  CAS  Google Scholar 

  • Gasson, M. J. (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154, 1–9.

    CAS  Google Scholar 

  • Gasson, M. J. and Fitzgerald, G. F. (1994) Gene transfer systems and transposition. In Genetics and Biotechnology of Lactic Acid Bacteria, M. J. Gasson and W. M. de Vos (eds), Chapman & Hall, London, pp. 1–51.

    Chapter  Google Scholar 

  • Godon, J.-J., Delorme, C., et al. (1993) Gene inactivation in Lactococcus lactis: branched chain amino acid biosynthesis. J. Bacteriol. 175, 4383–4390.

    CAS  Google Scholar 

  • Goupil, N., Godon, J.-J., et al. (1996) Imbalance of leucine flux in Lactococcus lactis and its use for the isolation of diacetyl-overproducing strains. Appl. Environ. Microbiol. 62, 2636–2640.

    CAS  Google Scholar 

  • Harrington, A. and Hill, C. (1991) Construction of a bacteriophage-resistant derivative of Lactococcus lactis subsp. lactis 425A by using the conjugal plasmid pNP40. Appl. Environ. Microbiol. 57, 3405–3409.

    CAS  Google Scholar 

  • Hill, C. (1993) Bacteriophage and bacteriophage resistance in lactic acid bacteria. FEMS Microbiol. Rev. 12, 87–88.

    Article  CAS  Google Scholar 

  • Hugenholtz, J. (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 12, 165–178.

    Article  CAS  Google Scholar 

  • Jarvis, A. W., Heap, H. A. et al. (1989) Resistance against industrial bacteriophage conferred on lactococci by plasmid pAJ1106 and related plasmids. Appl. Environ. Microbiol. 55: 1537–1543.

    CAS  Google Scholar 

  • Klaenhammer, T. R., and Sanozsky, R. B. (1985) Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high frequency conjugal plasmid responsible for abortive infection of virulent bacteriophage. J. Gen. Microbiol. 131, 1531–1541.

    CAS  Google Scholar 

  • Kok, J., Van der Vossen, J. M. B. M. and Venema, G. (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl. Environ. Microbiol. 48, 726–731.

    CAS  Google Scholar 

  • Kok, J. (1990) Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol. Rev. 87, 15–42.

    Article  CAS  Google Scholar 

  • Kondo, J. K. and McKay, L. L. (1982) Transformation of Streptococcus lactis protoplasts by plasmid DNA. Appl. Environ. Microbiol. 43, 1213–1215.

    CAS  Google Scholar 

  • Leenhouts, K. J., Kok, J. and Venema, G. (1991) Lactococcal plasmid pWV01 as an integration vector for lactococci. Appl. Environ. Microbiol. 57, 2562–2567.

    CAS  Google Scholar 

  • McKay, L. L. and Baldwin K. A. (1975). Plasmid distribution and evidence for a proteinase plasmid in Streptococcus lactis. Appl. Microbiol. 29, 546–548.

    CAS  Google Scholar 

  • Platteeuw, C. et al. (1995) Metabolic engineering of Lactococcus lactis: influence of the overproduction of α-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl. Environ. Microbiol. 61, 3967–3971.

    CAS  Google Scholar 

  • Platteeuw, C., van Alen-Boerrigter, I. J. et al. (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl. Environ. Microbiol. 62, 1008–1013.

    CAS  Google Scholar 

  • Pot, B., Ludwig, W. et al. (1994) Taxonomy of lactic acid bacteria in Bacteriocins of Lactic Acid Bacteria (eds. L. de Vuyst and E. J. van Damme) Blackie Academic & Professional, Glasgow, pp. 13–90.

    Google Scholar 

  • Roberts, R. F., Zottola, E. A. et al. (1992) Use of a nisin-producing starter culture suitable for Cheddar cheese manufacture. J. Dairy Sci. 75, 2353–2363.

    Article  CAS  Google Scholar 

  • Ryan, M. P. et al. (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, Lacticin 3147. Appl. Environ. Microbiol. 62, 612–619.

    Google Scholar 

  • Sanders, M. E. et al. (1986) Conjugal strategy for construction of fast acid-producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl. Environ. Microbiol. 52, 1001–1007.

    CAS  Google Scholar 

  • Steele, J. L. and McKay L. L. (1986) Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Appl. Environ. Microbiol. 51, 57–64.

    CAS  Google Scholar 

  • Steenson, L. R. and Klaenhammer, T. R. (1985) Streptococcus cremoris M12R transconjugants 331–345.

    Google Scholar 

  • Swindell, S. R., Benson, K. H. et al. (1996) Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Appl. Environ. Microbiol. 62, 2641–2643.

    CAS  Google Scholar 

  • Van der Vossen, J. M. B. M., Kok, J., and Venema, G. (1985) Construction of cloning, promoter-screening and terminator-screening vectors for Bacillus subtilis and Streptococcus lactis. Appl. Environ. Microbiol. 48, 726–731.

    Google Scholar 

  • Venema, G., Huisin’t Veld et al. (eds) Proc. 5th Symp Lactic Acid Bacteria: Genetics Metabolism and Applications. Veldhoven, The Netherlands 8-12 September 1996.

    Google Scholar 

  • Verrips, C. T. and van den Berg, D. J. C. Barriers to application of genetically modified lactic acid bacteria. Antonie van Leeuwenhoek 70, 299–216.

    Google Scholar 

  • Wells, J.M., Robinson, K. et al. (1996) Lactic acid bacteria as vaccine delivery vehicles. Antonie van Leeuwenhoek 70, 317–330.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hill, C., Ross, R.P. (1998). Starter cultures for the dairy industry. In: Roller, S., Harlander, S. (eds) Genetic Modification in the Food Industry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5815-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5815-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7665-1

  • Online ISBN: 978-1-4615-5815-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics