Skip to main content

Part of the book series: Electronic Materials Series ((EMAT,volume 4))

Abstract

The introduction of the Monte Carlo (MC) method [1] for the analysis of nonlinear charge transport in semiconductors is due to Kurosawa [2] who presented a study of high-field transport of holes in Ge at the semiconductor conference held in Kyoto in 1966.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binder, K. (1984) Applications of the Monte Carlo Method in Statical Physics, Springer, New York.

    Google Scholar 

  2. Kurosawa, T. (1966) Monte Carlo calculation of hot-electron problems J. Phys. Soc. Jpn. 21, 424–6.

    CAS  Google Scholar 

  3. Ferry, D. K., Barker, J. R. and Jacoboni, C. (1980) Physics of Non-linear Transport in Semiconductors, Plenum, New York.

    Google Scholar 

  4. Hockney, R. W., Warriner, R. A. and Reiser, M. (1974) Two-dimensional particle models in semiconductor-device analysis Electron. Lett. 10, 484–6.

    CAS  Google Scholar 

  5. Baccarani, G., Jacoboni, C. and Mazzone, A. M. (1977) Current transport in narrow-base transistors Solid State Electron. 20, 5–10.

    CAS  Google Scholar 

  6. Jacoboni, C. and Lugli, P. (1989) The Monte Carlo Method for Semiconductor Device Simulation, Springer, New York.

    Google Scholar 

  7. Grubin, H. L., Ferry D. K. and Jacoboni, C. (1980) The Physics of Submicron Semiconductor Devices, Plenum, New York.

    Google Scholar 

  8. Brunetti, R., Jacoboni, C., Venturi, F., Sangiorgi, E. and Riccò, B. (1989) A many-band silicon model for hot-electron transport at high energies Solid State Electron. 32, 1663–7.

    CAS  Google Scholar 

  9. Abramo, A., Venturi, F., Sangiorgi, A., Higman, J. M. and Riccò, B. (1993) A numerical method to compute isotropic band models from anisotropic semiconductor band structures IEEE Trans. Comput.-Aided Design Integrated Circuits 12, 1327–36.

    Google Scholar 

  10. Jungemann, C., Keith, S., Meinerzhagen, B. and Engl, W. L. (1995) On the influence of band structure and scattering rates on hot electron modeling SISDEP Tech. Dig. Springer, Erlangen, pp. 222–5

    Google Scholar 

  11. Shichijo, H., Tang, J. Y., Bude, J. and Yoder, D. (1991) Full band Monte Carlo program for electrons in silicon Monte Carlo Device Simulation: Full Band and Beyond (ed. K. Hess), Kluwer, Boston, pp. 285–307

    Google Scholar 

  12. Ando, T., Fowler, A. B. and Stern, F. (1982) Electronic properties of two-dimensional systems Rev. Mod. Phys. 54, 437–672.

    CAS  Google Scholar 

  13. Kelly, M. J. (1995) Low-dimensional Semiconductors, Clarendon, Oxford.

    Google Scholar 

  14. Burt, M. G. (1992) The justification for applying the effective-mass approximation to microstructures J. Phys. Condens. Matter 4, 6651–90.

    Google Scholar 

  15. Jacoboni, C. and Reggiani, L. (1983) The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials Rev. Mod. Phys. 55, 645–705.

    CAS  Google Scholar 

  16. Ziman, J. M. (1961) A theory of the electrical properties of liquid metals I: the monovalent metals. Phil. Mag. 6, 1013–34.

    CAS  Google Scholar 

  17. Herbert, D. C. (1973) Electron-phonon interaction and inter-valley scattering in semiconductors Journal de Physique 6, 2788–810.

    CAS  Google Scholar 

  18. Zollner, S., Gopolan, S. and Cardona, M. (1990) Microscopic theory of intervalley scattering in GaAs: k-dependence of deformation potentials and scattering rates J. Appl. Phys. 68, 1682–93.

    CAS  Google Scholar 

  19. Hess, K. (1991) Monte Carlo Device Simulation: Full Band and Beyond, Kluwer, Boston.

    Google Scholar 

  20. Yoder, P. D. (1994) First-principle Monte Carlo Simulation of Charge Transport in Semiconductors PhD thesis (Urbana-Champaign).

    Google Scholar 

  21. Fischetti, M. V. and Laux, S. E. (1995) Monte Carlo study of sub-band gap impact ionization in small silicon field-effect transistors 1EDM Tech. Dig., pp. 305–8.

    Google Scholar 

  22. Menéndez, J. (1989) Phonons in GaAs-Al.x Ga1-x As superlattices J. of Luminescence 44, 285.

    Google Scholar 

  23. Molinari, E. (1995) Phonons and electron-phonon interaction in low-dimensional structures. Confined Electrons and Photons: New Physics and Applications (eds E. Burstein and C. Weisbuch), Plenum, New York, p. 161.

    Google Scholar 

  24. Fuchs, R. and Kliewer, K. L. (1965) Optical modes of vibration in an ionic crystal slab Phys. Rev. 140, A2076.

    Google Scholar 

  25. Huang, K. and Zhu, B. (1988) Dielectric continuum model and Frühlich interaction in superlattices Phys. Rev. B 38, 13 377.

    Google Scholar 

  26. Gerecke, H. and Bechstedt, F. (1991) Dielectric continuum model and Frühlich interaction in superlattices Phys. Rev. B 43, 7053.

    Google Scholar 

  27. Mori, N. and Ando, T. (1989) Electron-optical-phonon interaction in single and double heterostructures Phys. Rev. B 40 6175.

    Google Scholar 

  28. Rücker, H., Molinari, E. and Lugli, P. (1992) Microscopic calculation of the electron-phonon interaction in quantum wells Phys. Rev. B 45, 6747.

    Google Scholar 

  29. Rossi, F., Rota, L., Bungaro, C., Lugli, P. and Molinari, E. (1993) Phonons in thin GaAs quantum wires Phys. Rev. B 47, 1695.

    CAS  Google Scholar 

  30. Molinari, E., Bungaro, C., Rossi, F., Rota, L. and Lugli, P. (1993) Phonons in thin GaAs/AlAs nanostructures: from two-dimensional to one-dimensional systems (eds J. P. Leburton, J. Pascual and C. M. Sotomayor Torres) Phonons in Semiconductors Nanostructures, Kluwer, Boston, p. 39

    Google Scholar 

  31. Rota, L., Rossi, F., Gulia, M., Lugli, P. and Molinari, E. (1992) Monte Carlo simulation of a ‘true’ quantum wire Advanced Semiconductor Epitaxial Growth Processes and Lateral and Vertical Fabrication (ed. R. J. Malik), SPIE, Bellingham, p. 161.

    Google Scholar 

  32. Lugli, P., Rota, L. and Rossi, F. (1992) Thermalization of photoexcited carriers in bulk and quantum wire semiconductors Phys. Stat. Sol. B 173, 229.

    CAS  Google Scholar 

  33. Mayer, J. R. and Bartoli, F. J. (1981) Phase-shift calculation of ionized impurity scattering in semiconductors Phys. Rev. B 23, 5413–27.

    Google Scholar 

  34. Chattopadhyay, D. and Queisser, H. J. (1981) Electron scattering by ionized impurities in semiconductors Rev. Mod. Phys. 53, 745-68

    Google Scholar 

  35. Norton, P. and Levinstein, H. (1972) Determination of compensation densities by Hall and mobility analysis in copper-doped germanium Phys. Rev. B 6, 470–7.

    CAS  Google Scholar 

  36. Pines, D. and Bohm, D. (1952) A collective description of electron interaction: II. collective vs. individual particle aspects of the interactions Phys. Rev. 85, 338–53.

    CAS  Google Scholar 

  37. Abramo, A., Brunetti, R., Jacoboni, C., Venturi, F. and Sangiorgi, E. (1994) A multiband Monte Carlo approach to Coulomb interaction for device analysis J. Appl. Phys. 76, 5786–94.

    CAS  Google Scholar 

  38. Bacchelli, L. and Jacoboni, C. (1972) Electron-electron interactions in Monte Carlo transport calculations Solid State Comm. 10, 71–4.

    Google Scholar 

  39. Matulionis, A., Pozela, J. and Reklaitis, A. (1975) Monte Carlo treatment of electron-electron collisions Solid State Comm. 16, 1133–7.

    CAS  Google Scholar 

  40. Lugli, P. and Ferry, D. K. (1985) Electron-electron interaction and high-field transport in silicon Appl. Phys. Lett. 46, 594–6.

    CAS  Google Scholar 

  41. Brunetti, R., Jacoboni, C., Matulionis, A. and Dienys, V. (1985) Effect of interparticle collisions on energy relaxation of carriers in semiconductors Physica B 134, 369–73.

    CAS  Google Scholar 

  42. Siggia, E. D. and Kwok, P. C. (1970) Properties of electrons in semiconductor inversion layers with many occupied electric subbands. I. screening and impurity scattering Phys. Rev. B 2, 1024.

    Google Scholar 

  43. Rota, L., Rossi, F., Lugli, P. and Molinari, E. (1995) Ultrafast relaxation of pho-toexcited carriers in semiconductor quantum wires: a Monte Carlo approach Phys. Rev. B 52, 5183.

    CAS  Google Scholar 

  44. Rota, L., Rossi, F., Goodnick, S. M., Lugli, P., Molinari, E. and Porod, W. (1993) Reduced carrier cooling and thermalization in semiconductor quantum wires Phys. Rev. B 47, 1632.

    CAS  Google Scholar 

  45. Mosko, M. and Cambel, V. (1994) Thermalization of a one-dimensional electron gas by many-body Coulomb scattering: Molecular-dynamics model for quantum wires Phys. Rev. B 50, 8864.

    CAS  Google Scholar 

  46. Bosi, S. and Jacoboni, C. (1976) Monte Carlo high-field transport in degenerate GaAs J. Phys. C: Solid State Phys. 9, 315–9.

    CAS  Google Scholar 

  47. Goodnick, S. M., Ferry, D. K., Wilmsen, C. W., Lilental, Z., Fathy, D. and Krivanek, O. L. (1985) Surface roughness at the 5/(100)Sc—SiO 2 interface Phys. Rev. B 32, 8171–86

    Google Scholar 

  48. Sangiorgi, E. and Pinto, M. R. (1992) A semi-empirical model of surface scattering for Monte Carlo simulation of silicon n-MOSFETS IEEE Trans. Electron Devices 39, 356–61.

    Google Scholar 

  49. Laux, S. E., Fischetti, M. V. and Frank, D. J. (1990) The DAMOCLES program IBM J. Res. Dev. 34, 466.

    CAS  Google Scholar 

  50. Pinto, M. R., Sangiorgi, E. and Bude, J. (1993) Silicon MOS transconductance scaling into the overshoot regime IEEE Electron Device Lett. 14, 375–8.

    CAS  Google Scholar 

  51. Sabnis, A. G. and Clemens, J. T. (1979) Characterization of the electron mobility in the inverted (100) Si surface IEDM Tech. Dig., pp. 18–21.

    Google Scholar 

  52. Ishizaka, M., Iizuka, T., Ohi, S., Fukuma, M. and Mikoshiba, H. (1990) Advanced electron mobility model of MOS inversion layer considering 2D-degenerated electron gas physics IEDM Tech. Dig., pp. 763–6.

    Google Scholar 

  53. Fischetti, M. V. and Laux, S. (1993) Monte Carlo study of electron transport in silicon inversion layers Phys. Rev. B 48, 2244–74.

    CAS  Google Scholar 

  54. Abramo, A., Bude, J., Venturi, F. and Pinto, M. R. (1994) Mobility simulation in Si/SiGe heterostructure FETs IEDM Tech. Dig., p. 731.

    Google Scholar 

  55. Reggiani, L., Lugli, P. and Mitin, V. (1987) Monte Carlo algorithm for generation-recombination noise in semiconductors Appl. Phys. Lett. 51, 925–7.

    CAS  Google Scholar 

  56. Thoma, T., Peifer, H. J., Engl, W. L., Quade, W., Brunetti, R. and Jacoboni, C. (1991) A generalized impact-ionization model for high-energy electron transport in Si with Monte Carlo simulation J. Appl. Phys. 69, 2300–11.

    CAS  Google Scholar 

  57. Kunikiyo, T., Takenaka, M., Kamakura, Y., Yamaji, M., Mizuno, H., Morifuji, M., Taniguchi, K. and Hamaguchi, C. (1994) A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact-ionization model J. Appl. Phys. 75, 297–312.

    CAS  Google Scholar 

  58. Cartier, E., Fischetti, M. V., Eklund, E. A. and McFeely, F. R. (1993) Impact ionization in silicon Appl. Phys. Lett. 62, 3339–41.

    CAS  Google Scholar 

  59. Sano, N. and Yoshii, A. (1995) Impact-ionization model consistent with the band structure of semiconductors J. Appl. Phys. 77, 2020–5.

    CAS  Google Scholar 

  60. Sangiorgi, E., Riccò, B. and Venturi, F. (1988) MOS2: an efficient Monte Carlo Simulator for MOS devices IEEE Trans. Comput.-Aided Design Integrated Circuits 7, 259–71.

    Google Scholar 

  61. Landau, L. D. and Lifshitz, E. M. (1958) Quantum Mechanics, Pergamon, Oxford.

    Google Scholar 

  62. Price, P. J. (1970) The theory of hot electrons IBM J. Res. Dev.14, 12–14.

    Google Scholar 

  63. Lebwohl, P. A. and Price, P. J. (1971) Direct microscopic simulation of Gunn-domain phenomena Appl. Phys. Lett. 19, 530–2.

    CAS  Google Scholar 

  64. Kocevar, P. (1985) Hot phonons dynamics Phys. Rev. B 134, 155.

    CAS  Google Scholar 

  65. Lugli, P. (1988) Hot phonon dynamics Solid State Electron. 31, 667.

    Google Scholar 

  66. Rieger, M., Kocevar, P., Bordone, P., Lugli, P. and Reggiani, L. (1988) Transient hot-phonon effects on the velocity overshoot of GaAs: a Monte Carlo analysis Solid State Electron. 31, 687.

    CAS  Google Scholar 

  67. Lugli, P., Bordone, P., Reggiani, L., Rieger, M., Kocevar, P. and Goodnick., S. M. (1989) Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. I. Laser photoexcitation Phys. Rev. B 39, 7852.

    Google Scholar 

  68. Rieger, M., Kocevar, P., Lugli, P., Bordone, P., Reggiani, L. and Goodnick, S. M. (1989) Monte Carlo sudies of nonequilibrium phonon effects in polar semiconductors and quantum wells. II. Non-ohmic transport in tf-type gallium arsenide Phys. Rev. B 39, 7866.

    Google Scholar 

  69. Lugli, P. and Goodnick, S. M. (1987) Nonequilibrium longitudinal-optical phonon effects in GaAs-AlGaAs quantum wells Phys. Rev. Lett. 59, 716.

    CAS  Google Scholar 

  70. Bordone, P. and Lugli, P. (1994) Effect of half-space and interface phonons on the transport properties of Alx Ga1-x As/GaAs single heterostructures Phys. Rev. B 49, 8178.

    CAS  Google Scholar 

  71. Phillips, A. and Price, P. J. (1977) Monte Carlo calculations of hot electron energy tails. Appl. Phys. Lett. 30, 528–30.

    Google Scholar 

  72. Pacelli, A., Duncan, A. W. and Ravaioli, U. (1996) A multiplication scheme with variable weights for ensemble Monte Carlo simulation of hot-electron tails Hot Carriers in Semiconductors, Plenum, New York, pp. 409–12

    Google Scholar 

  73. Abramo, A. and Fiegna, C. (1996) Electron energy distributions in silicon structures at low applied voltages and high electric fields J. Appl. Phys. 80, 889–93.

    CAS  Google Scholar 

  74. Rossi, F., Poli, P. and Jacoboni, C. (1992) Weighted Monte Carlo approach to electron transport in semiconductors Semicond. Sci. Technol. 7, 1017–35.

    CAS  Google Scholar 

  75. Venturi, F., Sangiorgi, E., Luryi, S., Poli, P., Rota, L. and Jacoboni, C. (1991) Energy oscillations in electron transport across a triangular barrier IEEE Trans. Electron Devices 38, 611–18.

    Google Scholar 

  76. Abramo, A., Venturi, F., Sangiorgi, E., Higman, J. and Riccò, B. (1992) A numerical method to compute isotropic band models from anisotropic semiconductor band structures NUPAD Tech. Dig., pp. 85–90.

    Google Scholar 

  77. Bude, J. and Smith, R. K. (1994) Phase-space simplex Monte Carlo for semiconductor transport Semicond. Sci. Technol. 9, 840–3.

    CAS  Google Scholar 

  78. Venturi, F., Smith, R. K., Sangiorgi, E., Pinto, M. R. and Riccò, B. (1988) A new coupling scheme for a self-consistent Poisson and Monte Carlo device simulator SISDEP Tech. Dig., Tecnoprint, Bologna, pp. 383-6

    Google Scholar 

  79. Woolard, D. L., Tian, W., Littlejohn, M. A. and Kim, K. W. (1994) The implementation of physical boundary conditions in the Monte Carlo simulation of electron devices IEEE Trans. Comput.-Aided Design Integrated Circuits 13, 1241–6.

    Google Scholar 

  80. Gonzales, T. and Pardo, D. (1996) Physical models of ohmic contact for Monte Carlo device simulation Solid State Electron. 39, 555–62.

    Google Scholar 

  81. Fischetti, M. V. and Laux, S. E. (1988) Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects Phys. Rev. B 38, 9721–45.

    Google Scholar 

  82. Venturi, F., Smith, R. K., Sangiorgi, E., Pinto, M. R. and Riccò, B. (1989) A general purpose device simulator coupling Poisson and Monte Carlo transport with applications to deep submicron MOSFETs IEEE Trans. Comput.-Aided Design Integrated Circuits 8, 360–9.

    Google Scholar 

  83. Rambo, P. W. and Denavit, J. (1993) Time stability of Monte Carlo device simulation IEEE Trans. Comput.-Aided Design Integrated Circuits 12, 1734–41.

    Google Scholar 

  84. Ghetti, A., Wang, X., Venturi, F. and Leon, F. A. (1995) Stability issues in self-consistent Monte Carlo-Poisson simulations SISDEP Tech. Dig., Springer, Erlangen, pp. 388–91.

    Google Scholar 

  85. Kometer, K., Zandler, G. and Vogl, P. (1992) Lattice-gas cellular-automaton method for semiclassical transport in semiconductors Phys. Rev. B 46, 1382–94.

    Google Scholar 

  86. Ventura, D., Gnudi, A. and Baccarani, G. (1992) Multidimensional spherical harmonics expansion of Boltzmann equation for transport in semiconductors Appl. Math. Lett. 5, 85–90.

    Google Scholar 

  87. Vecchi, M. C., Ventura, D., Gnudi, A. and Baccarani, G. (1994) Incorporating full band-structure effects in the spherical-harmonics expansion of the Boltzmann transport equation Proc. of the NUPAD V Conference, Honolulu (eds H. S. Bennet and M. E. Law), pp. 55–8.

    Google Scholar 

  88. Iizuka, T. and Fukuma, M. (1990) Carrier transport simulator for silicon based on carrier distribution function evolution Solid State Electron. 33, 27–34.

    Google Scholar 

  89. Fiegna, C., Venturi, F., Sangiorgi, E. and Riccò, B. (1990) Efficient non-local modeling of the electron energy distribution in sub-micron MOSFETS IEDM Tech. Dig., pp. 451-4

    Google Scholar 

  90. Tanaka, S. and Lundstrom, M. S. (1993) A flux-based approach to HBT device modeling IEDM Tech. Dig., pp. 505–8.

    Google Scholar 

  91. Abramo, A., Baudry, L., Brunetti, R., Castagné, R., Charef, M., Dessenne, F., Dolfus, P., Dutton, R., Engl, W. L., Fauquembergue, R., Fiegna, C., Fischetti, M. V., Galdin, S., Goldsman, N., Hackel, M., Hamaguchi, C., Hess, K., Hennacy, K., Hesto, P., Higman, J. M., Iizuka, T., Jungemann, C., Kamakura, Y., Kosina, H., Kunikiyo, T., Laux, S., Lin, H., Maziar, C., Mizuno, H., Peifer, H. J., Ramaswamy, S., Sano, N., Scrobohaci, P. G., Selberherr, S., Takenaka, M., Tang, T.-W., Taniguchi, K., Thobel, J. L., Thoma, R., Tomizawa, K., Tomizawa, M., Vogelsang, T., Wang, S.-L., Wang, X., Yao, C.-S., Yoder, P. D. and Yoshii, A. (1994) A comparison of numerical solutions of the Boltzmann transport equation for high-energy electron transport silicon IEEE Trans. Electron Devices 41, 1646–54.

    CAS  Google Scholar 

  92. Jacoboni, C., Gagliani, G., Reggiani, L. and Turci, O. (1978) Noise and diffusion of hot holes in Si Solid State Electron. 21, 315–18.

    CAS  Google Scholar 

  93. Reggiani, L., Golinelli, P., Varani, L., Gonzales, T., Pardo, D., Starikov, E., Shiktorov, P. and Gruzinskis, V. (1996) Monte Carlo analysis of electronic noise in semiconductor materials and devices Microelectronics Journal, submitted.

    Google Scholar 

  94. Golinelli, P., Brunetti, R., Varani, L., Reggiani, L. and Rudan, M. (1995) Monte Carlo calculation of hot-carrier thermal conductivity in semiconductors Hot Carriers in Semiconductors (eds K. Hess, J. P. Leburton and U. Ravaioli), Plenum, New York, pp. 405–407.

    Google Scholar 

  95. Brunetti, R. and Jacoboni, C. (1984) Analysis of the stationary and transient autocorrelation function in semiconductors Phys. Rev. B 29, 5739–43.

    CAS  Google Scholar 

  96. Goodnick, S. M. and Lugli, P. (1988) Effect of electron-electron scattering on nonequilibrium transport in quantum-well systems Phys. Rev. B 37, 2578.

    Google Scholar 

  97. Yamada, T., Miyata, H., Zhou, J.-R. and Ferry, D. K. (1994) Monte Carlo study of the low-temperature mobility of electrons in strained Si layers grown on a Si1-x Gex substrate Phys. Rev. B 49, 1875–81.

    CAS  Google Scholar 

  98. Thobel, J. L., Sleiman, A., Boural, P. and Dessenne, F. (1996) Monte Carlo study of electron transport in III-V heterostructures with doped quantum wells J. Appl. Phys. 80, 928–35.

    CAS  Google Scholar 

  99. Yamada, T., Zhou, J-R., Miyata, H. and Ferry, D. K. (1994) Velocity overshoot in a modulation-doped Si/Si 1-x Ge x structure Semicond. Sci. Technol. 9, 775–7.

    CAS  Google Scholar 

  100. Yamada, T. and Ferry, D. K. (1995) Monte Carlo simulation of hole transport in strained Si 1-x Gex Solid State Electron. 38, 881–90.

    CAS  Google Scholar 

  101. Abramo, A., Bude, J., Venturi, F. and Pinto, M. R. (1996) Mobility simulation of a novel Si/SiGeFET structure IEEE Electron Device Lett. 17, 59–61.

    CAS  Google Scholar 

  102. Ismail, K., Arafa, M., Saenger, K. L., Chu, J. O. and Meyerson, B. S. (1995) Extremely high electron mobility in Si/SiGe modulation-doped heterostructures Appl. Phys. Lett. 66, 1077–9.

    CAS  Google Scholar 

  103. Ismail, K., Rishton, S., Chu, J. O., Chan, K. and Meyerson, B. S. (1993) High performance Si/SiGe n-type modulation-doped transistors IEEE Electron Device Lett. 14, 348–50.

    CAS  Google Scholar 

  104. Shah, J., Pinczuk, A., Gossard, A. C. and Wiegmann, W. (1985) Energy-loss rates for hot electrons and holes in GaAs quantum wells Phys. Rev. Lett. 54, 2045–8.

    CAS  Google Scholar 

  105. Maciel, A. C., Kiener, C., Rota, L., Ryan, J. F., Marti, U., Martin, D., Morier-Gemoud, F. K. and Reinhart, F. K. (1995) Hot carrier relaxation in GaAs V-groove quantum wires Appl. Phys. Lett. 66, 3039–41.

    CAS  Google Scholar 

  106. Freyland, J. M., Turner, K., Kiener, C., Rota, L., Ryan, J. F., Marti, U., Martin, D., Morier-Gemoud, F. and Reinhart, F. K. (1996) Reduced carrier cooling in GaAs V-groove quantum wires due to non-equilibrium phonon population Hot carriers in semiconductors (eds K Hess, J. P. Leburton and U. Ravaioli), Plenum, New York, pp. 323–5.

    Google Scholar 

  107. Lugli, P., Bordone, P., Molinari, E., Rücker, H., de Paula, A. M., Maciel, A. C., Ryan, J. F. and Shayegan, M. (1992) Interaction of electrons with interface phonons in GaAs/AlAs and GaAs/AlGaAs heterostructures Semicond. Sci. Technol. 7, 116–19.

    Google Scholar 

  108. Turner, K., Rota, L., Taylor, R. A. and Ryan, J. F. (1996) Ultrafast optical absorption measurements of electron-phonon scattering in GaAs quantum well Hot carriers in semiconductors (eds K Hess, J. P. Leburton and U. Ravaioli), Plenum, New York, pp. 23–6.

    Google Scholar 

  109. Lugli, P., Bordone, P., Gualdi, S., Poli, P. and Goodnick, S. M. (1989) Hot phonons in quantum wells systems Solid State Electron. 32, 1881.

    Google Scholar 

  110. Rota, L., Ryan, J. F., Rossi, F., Lugli, P. and Molinari, E. (1994) Hot phonons in quantum wires: a Monte Carlo investigation Europhys. Lett. 28, 277.

    CAS  Google Scholar 

  111. Mizuno, T., Toriumi, A., Iwase, M., Takahashi, M., Niiyama, H., Fukumoto, M. and Yoshimi, M. (1992) Hot carrier effects in 0.1 μm gate length CMOS devices IEDM Tech. Dig., pp. 695–8.

    Google Scholar 

  112. Esseni, D., Selmi, L., Sangiorgi, E., Bez, R. and Riccò, B. (1994) Bias and temperature dependence of gate and substrate currents in n-MOSFETs at low drain voltage IEDM Tech. Dig. pp. 307–10.

    Google Scholar 

  113. Bude, J. D., Frommer, A., Pinto, M. R. and Weber, G. R. (1995) EEPROM/Flash sub 3.0V drain-source bias hot carrier writing IEDM Tech. Dig., pp. 989–91.

    Google Scholar 

  114. Fischer, B., Selmi, L., Ghetti, A. and Sangiorgi, E. (1996) Electron injection into the gate oxide of MOS structures at liquid nitrogen temperature: measurement and simulation Journal de Physique IV 6, 19–24.

    CAS  Google Scholar 

  115. Ellis-Monaghan, J. J., Hulfachor, R. B., Kim, K. W. and Littlejohn, M. A. (1996) Ensemble Monte Carlo study of interface-state generation in low-voltage scaled silicon MOS devices IEEE Trans. Electron Devices 43, 1123–32.

    CAS  Google Scholar 

  116. Lee, C. H., Ravaioli, U., Hess, K., Mead, C. A. and Hasler, P. (1995) Simulation of a long term memory device with full bandstructure Monte Carlo approach IEEE Electron Device Lett. 16, 360–2.

    Google Scholar 

  117. Tang, J. and Hess, K. (1983) Impact ionization of hot electrons in silicon (steady state) J. Appl. Phys. 54, 5139–45.

    CAS  Google Scholar 

  118. Reggiani, L., Lugli, P. and Jauho, A. P. (1988) Monte Carlo algorithms for colli-sional broadening and intracollisional field effect in semiconductor high-field transport J. Appl. Phys. 64, 3072–8.

    Google Scholar 

  119. Ghetti, A., Selmi, L., Sangiorgi, E., Abramo, A. and Venturi, F. (1994) A combined transport-injection model for hot-electron and hot-hole injection in the gate oxide of MOS structures IEDM Tech. Dig., pp. 363–6.

    Google Scholar 

  120. Fischetti, M. V., Laux, S. E. and Crabbé, E. (1995) Understanding hot-electron transport in silicon devices: is there a shortcut? J. Appl. Phys. 78, 1058–87.

    CAS  Google Scholar 

  121. Hess, K. (1988) Real space transfer: generalized approach to transport in confined geometries Solid State Electron. 31319-24.

    Google Scholar 

  122. Brunetti, R., Jacoboni, C. and Price, P. J. (1994) Quantum-mechanical evolution of real-space transfer Phys. Rev. B 50, 11 872–8.

    Google Scholar 

  123. Kizilyalli, I., Hess, K., Higman, T., Emanuel, M. and Coleman, J. (1988) Ensemble Monte Carlo simulation of real space transfer (NERFET/CHINT) devices Solid State Electron. 31, 355–8.

    Google Scholar 

  124. Chambers, R. (1952) The kinetic formulation of the transport problem Proc. Phys. Soc. A 65, 458–9.

    Google Scholar 

  125. Abramo, A., Casarini, P. and Jacoboni, C. (1995) Transmission properties of resonant cavities and rough quantum wells Hot Carriers in Semiconductors (eds K. Hess, J. P. Leburton and U. Ravaioli), Plenum, New York, pp. 509–12.

    Google Scholar 

  126. Brunetti, R., Jacoboni, C. and Nedjalkov, M. (1996) Quantum transport with electron-phonon interaction in the Wigner-function formalism Hot Carriers in Semiconductors (eds K. Hess, J. P. Leburton and U. Ravaioli), Plenum, New York, pp. 417–20.

    Google Scholar 

  127. Brunetti, R., Jacoboni, C. and Rossi, F. (1989) Quantum theory of transient transport in semiconductors: A Monte Carlo approach Phys. Rev. B 39, 10 781–90.

    Google Scholar 

  128. Brunetti, R., Jacoboni, C., Nava, F., Reggiani, L., Bosman, G. and Zijlstra, R. J. J. (1981) Diffusion coefficient of electrons in silicon. J. Appl. Phys. 52, 6713.

    CAS  Google Scholar 

  129. Sano, N. and Yoshii, A. (1994) Impact ionization rate near thresholds in Si. J. Appl. Phys. 75, 5102.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jacoboni, C., Brunetti, R., Bordone, P. (1998). Monte Carlo simulation of semiconductor transport. In: Schöll, E. (eds) Theory of Transport Properties of Semiconductor Nanostructures. Electronic Materials Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5807-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5807-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-73100-6

  • Online ISBN: 978-1-4615-5807-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics