Skip to main content

Abstract

The brain is organized into the cerebrum, brain stem, and cerebellum. The cerebrum consists of two cerebral hemispheres, basal ganglia, and the diencephalon. The hemispheres contain the cerebral cortex and underlying white matter, and are associated with higher order functioning, including memory, cognition, and fine motor control. The basal ganglia, contained within the hemispheres, controls gross motor function. The diencephalon is much smaller than the cerebrum, contains the thalamus and hypothalamus, and is associated with relaying sensory information and controlling the autonomic nervous system. The brainstem contains the mesencephalon, pons and the medulla oblangata. The smallest segment of the brain, the mesencephalon, is located below the diencephalon and is thought to play a role in consciousness. Muscle activation, tone and equilibrium is controlled in the pons and cerebellum located below the mesencephalon, and respiratory and cardiac processes are governed by the medulla oblongata, located directly beneath the pons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duck, F.A. (1990) Physical Properties of Tissue, Academic Press, New York.

    Google Scholar 

  2. ICRP (1975) Report of the Task Group on Reference Man, ICRP Publication 23, International Commission on Radiological Protection, Pergamon Press, Oxford, pp. 212–215; 280-281.

    Google Scholar 

  3. Woodard, H.Q. and White, D.R. (1986) The composition of body tissues. Brit. J. Radiol, 59, 1209–1219.

    Article  PubMed  CAS  Google Scholar 

  4. McElhaney, J.H., Roberts, V.L. and Hilyard, J.F. (1976) Handbook of Human Tolerance, Japanese Automobile Research Institute, Tokyo, pp. 151.

    Google Scholar 

  5. Fung, Y.C. (1993) Biomechanics: Mechanical properties of living tissues, 2nd ed., Springer-Verlag, New York.

    Google Scholar 

  6. Galford, J.E. and McElhaney, J.H. (1970) A viscoelastic study of scalp, brain, and dura. J. Biomech., 3, 211–221.

    Article  PubMed  CAS  Google Scholar 

  7. Fallenstein, G.T., Hulce, V.D. and Melvin, J.W. (1969) Dynamic mechanical properties of human brain tissue. J. Biomech., 2, 217–226.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, H.C. and Wineman, A.S. (1972) A mathematical model for the determination of viscoelastic behavior of brain in vivo — I: Oscillatory response. J. Biomech., 5, 431–446.

    Article  PubMed  CAS  Google Scholar 

  9. Metz, H., McElhaney, J. and Ommaya, A.K. (1970) A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech., 3, 453–458.

    Article  PubMed  CAS  Google Scholar 

  10. Ljung, C. (1975) A model for brain deformation due to rotation of the skull. J. Biomech., 8, 263–274.

    Article  PubMed  CAS  Google Scholar 

  11. Shuck, L.Z. and Advani, S.H. (1972) Rheological response of human brain tissue in shear. J. Basic Eng, Trans ASME, 94, 905–911.

    Article  Google Scholar 

  12. Pamidi, M. and Advani, S. (1978) Nonlinear constitutive relations for human brain tissue. J. Biomech. Eng., 100, 44–48.

    Article  Google Scholar 

  13. Basser, P. (1992) Interstitial pressure, volume and flow during infusion into brain tissue. Microvascular Res., 44, 143–165.

    Article  CAS  Google Scholar 

  14. Osswald, K. (1937), (Measurement of the conductivity and dielectric constants of biological tissues and liquids by microwave) (Ger.) Messung der Leitfahigkeit und Dielektrizitatkonstante biologischer gewebe und Flussigkeiten bei kurzen Wellen. Hochfrequentz Tech. Elektroakustik, 49, 40–49.

    CAS  Google Scholar 

  15. Crile, G.W., Hosmer, H.R. and Rowland, A.F. (1922) The electrical conductivity of animal tissues under normal and pathological conditions. Am. J. Physiol, 60, 59–106.

    Google Scholar 

  16. Ranck, J.B. and De Merit, S.L. (1963) Specific impedance of rabbit cerebral cortex. Exp. Neurol, 7 144–152.

    Article  PubMed  Google Scholar 

  17. Freygang, W.H. and Landaw, W.M. (1955) Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J. Cell. Comp. Physiol, 45, 377–392.

    Article  Google Scholar 

  18. van Harreveld, A., Murphy, T. and Nobel, K.W. (1963) Specific impedance of rabbit’s cortical tissue. Am. J. Physiol., 205, 203–207.

    Google Scholar 

  19. Cooper, T.E. and Trezek, G.J. (1972) A probe technique for determining thermal conductivity of tissue. J. Heat Transfer, Trans. ASME, 94, 133–140.

    Article  Google Scholar 

  20. Bowman, H.F. (1981) Heat transfer and thermal dosimetry. J. Microwave Power, 16, 121–133.

    CAS  Google Scholar 

  21. Valvano, J.W., Cochran, J.R. and Diller, K.R. (1985) Thermal conductivity and diffusivity of biomaterial measured with self-heating thermistors. Int. J. Thermophys., 6, 301–311.

    Article  Google Scholar 

  22. Rosenberg, G.A., Kyner, W.T. and Estrada, E. (1980) Bulk flow of brain interstitial fluid under normal and hypermolar conditions. Am. J. Physiol., 238, f42-f49.

    Google Scholar 

  23. Nicholson, C. (1985) Diffusion from an injected volume of substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Research, 3, 325–329.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Margulies, S.S., Meaney, D.F. (1998). Brain tissues. In: Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5801-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5801-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-60330-3

  • Online ISBN: 978-1-4615-5801-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics