Skip to main content

Abstract

The permanent adult human dentition normally consists of 32 teeth, of which 16 are located in the mandible and 16 in the maxilla. There are 4 incisors, 2 canines, 4 premolars and 6 molars for the upper and lower dentition. The incisors are used for cutting food, the canines for tearing, the premolars for grasping, and the molars for grinding (i.e., masticating). There is a generic heterogeneous structure for these teeth, where enamel forms an exterior layer over the underlying dentin. From the cervix to the apex of the root, the exterior of the dentin is covered by cementum to which the periodontal ligament attaches the tooth to alveolar bone. Dental enamel is dense, highly mineralized, hard, and brittle. It contains prism-like structures that span from the enamel surface to the junction of enamel and dentin, the dentino-enamel junction (DEJ). The prisms are comprised of hydroxyapatite crystallites and contain very little organic matrix. These properties make dental enamel an excellent material for cutting and masticating food (i.e., processes that involve friction and wear). In contrast, dentin is not as hard as enamel, but it is tougher. Dentin is a heterogeneous material and can be thought of as a composite structure containing four major components: dentin matrix; dentinal tubules; mineral (i.e., carbonate containing hydroxyapatite); and, dentinal fluid. The dentinal tubules (∼45 000 per mm2) are formed during development of the dentin matrix and are distributed throughout the dentin matrix in a somewhat uniform manner. The dentin matrix mineralizes in an anisotropic fashion, where a highly mineralized tissue, peritubular dentin, surrounds the dentinal tubules. The mineralized tissue between the dentinal tubules and peritubular dentin is referred to as intertubular dentin. Histological examination has revealed that intertubular dentin is less mineralized than peritubular dentin. Furthermore, the matrix and mineral content of root dentin is different from coronal dentin. A good review of the structure of teeth can be found in Waters [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waters, N.E. (1980) Some mechanical and physical properties of teeth. Symp. Soc. Exp. Biol., 34, 99–135.

    PubMed  CAS  Google Scholar 

  2. Driessens, F.C.M. and Verbeeck, R.M.H. (1990) The mineral in tooth enamel and dental caries. In: Biominerals, Verbeeck, R.M.H. (eds), CRC Press, Boca Raton, Florida, pp. 105–161.

    Google Scholar 

  3. Driessens, F.C.M. and Verbeeck, R.M.H. (1990) Dentin, its mineral and caries, In: Biominerals, Driessens, F.C.M. and Verbeeck, R.M.H. (eds), CRC Press, Boca Raton, Florida, pp. 163–178.

    Google Scholar 

  4. Söremark, R. and Samsahl, K. (1961) Gamma-ray spectrometric analysis of elements in normal human enamel. Arch. Oral Bio., Special Suppl, 6, 275–283.

    Article  Google Scholar 

  5. Derise, N.L., Ritchey, S.J. and Furr, A.K. (1974) Mineral composition of normal human enamel and dentin and the relation of composition to dental caries: I Macrominerals and comparison of methods of analyses. J. Dental Res., 53(4), 847–852.

    Google Scholar 

  6. LeGeros, R.Z., Silverstone, L.M., Daculsi, G. et al. (1983) In vitro caries-like lesion formation in F-containing tooth enamel. J. Dental Res., 62(2), 138–144.

    Article  Google Scholar 

  7. Lakomaa, E-L. and Rytömaa, I. (1977) Mineral composition of enamel and dentin of primary and permanent teeth in Finland. Scand. J. Dent. Res., 85, 89–95.

    PubMed  CAS  Google Scholar 

  8. Cutress, T.W. (1979) A preliminary study of the microelement composition of the outer layer of dental enamel. Caries Res., 13, 73–79.

    Article  PubMed  CAS  Google Scholar 

  9. Losee, F.L., Cutress, T.W. and Brown, R. (1974) Natural elements of the periodic table in human dental enamel. Caries Res., 8, 123–134.

    Article  PubMed  CAS  Google Scholar 

  10. Retief, D.H., Cleaton-Jones, P.E., Turkstra, J. et al. (1971) The quantitative analysis of sixteen elements in normal human enamel and dentine by neutron activation analysis and high-resolution gamma-spectrometry. Arch. Oral Bio., 16, 1257–1267.

    Article  CAS  Google Scholar 

  11. Curzon, M.E.J. and Losee, F.L. (1977) Dental caries and trace element composition of whole human enamel: Eastern United States. J. Amer. Dental Assoc, 94, 1146–1150.

    CAS  Google Scholar 

  12. Curzon, M.E.J. and Losee, F.L. (1978) Dental caries and trace element composition of whole human enamel: Western United States. J. Amer. Dental Assoc, 96, 819–822.

    CAS  Google Scholar 

  13. Kodaka, T., Debari, K., Yamada, M. et al. (1992) Correlation between micro-hardness and mineral content in sound human enamel. Caries Res., 26, 139–141.

    Article  PubMed  CAS  Google Scholar 

  14. Panighi, M. and G’sell, C. (1992) Influence of calcium concentration on the dentin wetability of an adhesive. J. Biomed. Mater. Res., 26, 1081–1089.

    Article  PubMed  CAS  Google Scholar 

  15. Holcomb, D.W. and Young, R.A. (1980) Thermal decomposition of human tooth enamel. Calcif. Tiss. Intern., 31, 189–201

    Article  CAS  Google Scholar 

  16. Sakae, T. (1988) X-Ray diffraction and thermal studies of crystals from the outer and inner layers of human dental enamel. Archs. Oral Bio., 33(10), 707–713.

    Google Scholar 

  17. Huang, T.-J.G., Schilder, H. and Nathanson, D. (1992) Effects of moisture content and endodontic treatment on some mechanical properties of human dentin. J. Endodontics, 18(5), 209–215

    Google Scholar 

  18. Kerebel, B, Daculsi, G. and Kerebel, L.M. (1979) Ultrastructure studies of enamel crystallites. J. Dental Res., 58(B), 844–851.

    Google Scholar 

  19. Jervøe, P. and Madsen, H.E.L. (1974) Calcium phosphates with apatite structure. I. Precipitation, at different temperatures. Acta Chem. Scand., A28, 477–481.

    Google Scholar 

  20. Daculsi, G., Kerebel, B. and Verbaere, A (1978). (Méthode de mesure des cristaux d’apatite de la dentine humanie en microscopie électronique en transmission de Haute Résolution) (Fr.) (Method of measurement of apatite crystals in human dentin by high resolution transmission electron microscopy), Comptes Rendu Acad. Sci. Paris, Sér. D., 286, 1439.

    CAS  Google Scholar 

  21. Voegel, J.C. and Frank, R.M. (1977) Ultrastructural study of apatite crystal dissolution in human dentine and bone. Jour. Biol. Buccale, 5, 181–194.

    CAS  Google Scholar 

  22. Lehman, M.L. (1963) Tensile strength of human dentin. J. Dent. Res., 46(1), 197–201.

    Google Scholar 

  23. Stanford, J.W., Weigel, K.V., Paffenbarger, G.C. et al. (1960) Compressive properties of hard tooth tissues and some restorative materials. J. American Dental Assoc, 60, 746–756.

    CAS  Google Scholar 

  24. Jameson, M.W., Hood, J.A.A. and Tidmarsh, B.G. (1993) The effects of dehydration and rehydration on some mechanical properties of human dentine. J. Biomech., 26(9), 1055–1065.

    Google Scholar 

  25. Craig, R.G., Peyton, F.A. and Johnson, D.W. (1961) Compressive properties of enamel, dental cements, and gold. J. Dent. Res., 40(5), 936–945.

    Google Scholar 

  26. Korostoff, E., Pollack, S.R. and Duncanson, M.G. (1975) Viscoelastic properties of human dentin. J. Biomed. Mater. Res., 9, 661–674.

    Article  PubMed  CAS  Google Scholar 

  27. Bowen, R.L. and Rodriguez, M.S. (1962) Tensile strength and modulus of elasticity of Tooth Structure and Several Restorative Materials. J. American Dental Assoc, 64, 378–387.

    CAS  Google Scholar 

  28. Carter, J.M., Sorensen, S.E., Johnson, R.R., et al. (1983) Punch shear testing of extracted vital and endodontically treated teeth. J. Biomech., 16(10), 841–848.

    Google Scholar 

  29. Hassan, R., Caputo, A.A. and Bunshah, R.F. (1981) Fracture toughness of human enamel. J. Dent. Res., 60(4), 820–827.

    Google Scholar 

  30. Rasmussen, S.T., Patchin, R.E., Scott, D.B. et al. (1976) Fracture properties of human enamel and dentin. J. Dent. Res., 55(1), 154–164.

    Google Scholar 

  31. Caldwell, R.C., Muntz, M.L., Gilmore, R.W. et al. (1957) Microhardness studies of intact surface enamel. J. Dent. Res., 36(5), 732–738.

    Google Scholar 

  32. Remizov, S.M., Prujansky, L.Y. and Matveevsky, R.M. (1991) Wear resistance and microhardness of human teeth. Proc. Inst. Mech. Eng., Part H: J. Eng. in Med., 205(3), 201–202.

    Google Scholar 

  33. Davidson, C.L., Hoekstra, I.S. and Arends, J. (1974) Microhardness of sound, decalcified and etched tooth enamel related to the calcium content. Caries Res., 8, 135–144.

    Article  PubMed  CAS  Google Scholar 

  34. Pashley, D.H., Andringa, H.J., Derkson, G.D. et al. (1987) Regional variability in the permeability of human dentin. Arch. Oral Biol, 32(7), 519–523.

    Google Scholar 

  35. Pashley, D.H., Okabe, A. and Parham, P. (1985) The Relationship between dentin microhardness and tubule density. Endod. Dent. Traumatol, 1, 176–179.

    Article  PubMed  CAS  Google Scholar 

  36. Baier, R.E. and Zisman, W.A. (1975) Wetting properties of collagen and gelatin surfaces, in ‘Applied Chemistry at Protein Interfaces’, vol. 145, Advances in Chemistry series (ed. R.F. Gould), American Chemical Society, Washington DC, pp. 155–174.

    Chapter  Google Scholar 

  37. Jendresen, M.D., Baier, R.E. and Glantz, P-O. (1984) Contact angles in a biological setting: Measurements in the human oral cavity. J. Coll. Interface Sci, 100(1), 233–238.

    Google Scholar 

  38. Baier, R.E. (1973) Occurrence, nature, and extent of cohesive and adhesive forces in dental integuments, in: Surface Chemistry and Dental Integument’s. Lasslo, A. and Quintana, R.P. (eds), Thomas, Springfield, IL pp. 337–391.

    Google Scholar 

  39. Glantz, P-O. (1969) On wetability and adhesiveness. Odontologisk Revy, 20supp. 17, 1–132.

    Google Scholar 

  40. Jendresen, M.D. and Glantz, P-O. (1980) Clinical adhesiveness of the tooth surface. Acta Odontol. Scand., 38, 379–383.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Healy, K.E. (1998). Dentin and enamel. In: Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5801-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5801-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-60330-3

  • Online ISBN: 978-1-4615-5801-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics