Skip to main content

Abstract

Compared with other biomaterials like ceramics and poylmers, the metallic biomaterials possess the outstanding property of being able to endure tensile stresses, which, in the case of alloys, may be extremely high and also of dynamic nature. This is the reason why alloys, for example those with sufficient bending fatigue strength, are widely used as structural materials for skeletal reconstructions if high acting loads are expected to occur. Typical examples for such highly loaded implants are hip and knee endoprostheses, plates, screws, nails, dental implants, etc. Nevertheless, metallic biomaterials are also used for unloaded, purely functional devices such as cages for pumps, valves and heart pacemakers, conducting wires, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zitter, H. and Plenk, H. (1987) The Electrochemical Behaviour of Metallic Implant Materials as an Indicator of their Biocompatibility. J. of Biomedical Materials Research, 21, 881.

    Google Scholar 

  2. Fraker, A.C., Ruff, A.W., Sung, P. von Orden, A.C. and Speck, K.M. (1983) Surface Preparation and Corrosion Behaviour of Titanium Alloys for Surgical Implants, in Titanium Alloys in Surgical Implants, (eds H.A. Cuckey and F. Kubli), ASTM STP 796, pp. 206–219.

    Google Scholar 

  3. Mears, D.C. (1975) The Use of Dissimilar Metals Surgery. J. Biomed. Mat Res., 6, 133.

    Google Scholar 

  4. Rätzer-Scheibe, H.J. and Buhl, H. (1984) Repassivation of Titanium and Titanium Alloys, in Proc. of the 5th World Conf on Titanium, Vol. 4, pp. 2641–2648.

    Google Scholar 

  5. Higham, P.A. (1986). Proc. Conf. Biomed Mat., Boston, Dec. 1985, 253.

    Google Scholar 

  6. Williams, J.M. and Buchanan, R.A. (1985) Ion Implantation of Surgical Ti-6A1-4V. Mater. Sci. Eng., 69, 237–246.

    Article  CAS  Google Scholar 

  7. Zwicker, U., Etzold, U. and Moser, Th. (1984) Abrasive Properties of Oxide Layers on TiA15Fe2.5 in Contract with High Density Polyethylene, in Proc. of the 5th World Conf. on Titanium, Vol. 2, pp. 1343–1350.

    Google Scholar 

  8. Ferguson, A.B., Akahashi, Y., Laing, P.G. and Hodge, E.S. (1962) J. Bone and Joint Surg., 44, 323.

    Google Scholar 

  9. Hildebrand, H.F., Mercier, J.V., Decaeslecker, A.M., Ostapzuk, P., Stoeppler, U., Roumazeille, B. and Decloulx, J., Biomaterials.

    Google Scholar 

  10. Frazier, M.E. and Andrews, T.K. (1979), in Trace Metals in Health and Disease (ed. N. Karash), Raven Press, NY, 71.

    Google Scholar 

  11. Zwicker, U., Bühler, U., Müller, R., Beck, H., Schmid, H.J. and Ferstl, J. (1980) Mechanical Properties and Tissue Reactions of a Titanium Alloy for Implant Material, in Proc. of the 4th World Conf on Titanium, Vol. 1, pp. 505–514.

    Google Scholar 

  12. Semlitsch, M. Staub, T. and Weber, H. (1985) Titanium-Aluminium-Niobium Alloy, Development for Biocompatible, High Strength Surgical Implants. Biomed. Tech. 30(12), 334–339.

    Article  CAS  Google Scholar 

  13. Steinemann, S.G. and Perren, S.M. (1984) Titanium Alloys as Metallic Biomaterials, in Proc. of the 5th World Conf on Titanium, Vol 2, pp. 1327–1334.

    Google Scholar 

  14. Zitter, K., Plenk, H. and Strassl, H. (1980) Tissue and cell reactions in vivo and in vitro to different metals for dental implant, in Dental Implants, (ed. G. Heimke), C. Hanser, München, p. 15.

    Google Scholar 

  15. Bingmann, D. and Tetsch, P. (1986) Untersuchungen zur Biokompatibilität von Implantatmaterialien. Dt. Zeitschr. f. Zahnärztl. Implantol., Bd. II, 190.

    Google Scholar 

  16. Kubashewski, O., Evans, E.Cl. and Alcock, C.B. (1967) Metallurgical Thermochemistry, Pergamon Press, London.

    Google Scholar 

  17. Zitter, H. (1976) Schädigung des Gewebes durch metallische Implantate. Unfallheilkunde, 79, 91.

    Google Scholar 

  18. Tengvall, P., Lundström, J., Sjoquist, L., Elwing, H. and Bjursten, L.M. (1989) Titanium-Hydrogen Peroxide Interactions. Model Studies of the Influence of the Inflammatory Response on Titanium Implants. Biomaterials 10(3) 166–175.

    Article  PubMed  CAS  Google Scholar 

  19. Breme, J. Steinhäuser, E. and Paulus, G. (1988) Commercially Pure Titanium Steinhäuser Plate-Screw System for Maxillo facial Surgery. Biomaterials, 9, 310–313.

    Article  PubMed  CAS  Google Scholar 

  20. Krekeler, G. and Schilli, W. (1984) Das ITI-Implantat Typ H: Technische Entwicklung, Tierexperiment und klinische Erfahrung. Chirurgische Zahnheilkunde, 12, 2253–2263.

    Google Scholar 

  21. Kirsch, A. (1980) Titan-spritzbeschichtetes Zahnwurzel-implantat unter physiologischer Belastung beim Menschen. Dt.Zahnärztl.Z., 35, 112–114.

    CAS  Google Scholar 

  22. Schröder, A., van der Zypen, E. and Sutter, F. (1981) The Reaction of Bone, Connective Tissue and Epithelium to Endosteal Implants with Titanium-Sprayed Surface. J. Max. Fac. Surg., 9, 15.

    Article  Google Scholar 

  23. Brånemark, P.I., Adell, R., Albrektsson, T., Lekholm, U. Lundkvist, S. and Rockler, B. (1983) Osseointegrated Titanium Fixtures in the Treatment of Edentulousness. Biomaterials, 4, 25.

    Article  PubMed  Google Scholar 

  24. Schröder, A., Stich, H., Strautmann, F. and Sutter, F. (1978) über die Anlagerung von Osteozement an einem belasteten Implantatkörper. Schw. Mschr. f. Zahnheilkunde, 4, 1051–1058.

    Google Scholar 

  25. Kydd, W.L. and Daly, C.H. (1976) Bone-Titanium Implant Response to Mechanical Stress. J. Prosthet. Dent., 35, 567–571.

    Article  PubMed  CAS  Google Scholar 

  26. Strassl, H. (1978) Experimentelle Studie über das Verhalten von titanbeschichteten Werkstoffen hinsichtlich der Gewebekompatibilität im Vergleich zu anderen Metallimplanteten. Teil 1, Osten. Z. Stomatol., 75(4), 134–146.

    CAS  Google Scholar 

  27. Schmitz, HJ., Gross, V., Kinne, R., Fuhrmann, G. and Strunz, V., Der Einfluβ unterschiedlicher Oberflächenstrukturierung plastischer Implantate auf das histologische Zugfestigkeitsverhalten des Interface, 7. DVM-Vortragsreihe Implantate.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Breme, J., Biehl, V. (1998). Metallic Biomaterials. In: Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5801-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5801-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-60330-3

  • Online ISBN: 978-1-4615-5801-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics