Skip to main content

Part of the book series: Optoelectronics, Imaging and Sensing ((OISS,volume 2))

Abstract

Because of the richness of the technology involved, and the size of the market in which it can compete, the fiber optic gyroscope has acquired an uncommonly devoted following. It was first experimentally demonstrated in 1976 [1] and the first products became available in the early 1990s [2–7]. The first flight qualified fiber gyro products have been for attitude, heading, and reference systems (AHRS) applications which typically have performance requirements in the neighborhood of 1° h−1 drift rates, 500 ppm scale factor accuracy, and an angle random walk coefficient (RWC) of 0.05° h1/2 (the RWC being defined as the r.m.s. angular error accumulated after integrating the gyro output for 1 h due to the presence of white noise). The fiber gyro has also been aggressively pursued for applications in both the low cost rate sensing and inertial grade navigation markets, but the introduction of products into these markets has been slower due to somewhat less favorable cost/performance tradeoffs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Vali and R. W. Shorthill, Appl. Opt. 15, 1099 (1976).

    Article  Google Scholar 

  2. J. Blake, J. Feth, J. Cox, and R. Goettsche, ‘Design and test of a production open loop all fiber gyroscope’, Proc. SPIE 1169, 337 (1989).

    Google Scholar 

  3. H. Kajioka et al., ‘Fiber optic gyro productization at Hitachi’, Proc. SPIE 1585, 17 (1991).

    Google Scholar 

  4. K. Sakuma, ‘Fiber optic productization at JAE’, Proc. SPIE 1585, 8 (1991).

    Google Scholar 

  5. G. Pavlath, ‘Productization of fiber gyros at Litton Guidance and Control Systems’, Proc. SPIE 1585, 2 (1991).

    Google Scholar 

  6. H. C. Lefevre, P. Martin, and J. Morisse, ‘Fiber optic gyro productization at Photonetics’, Proc. SPIE 1585, 42 (1991).

    Google Scholar 

  7. W. Auch, M. Oswald, and R. Regener, ‘Fiber optic gyro productization at Alcatel SEL’, Proc. SPIE 1585, 65 (1991).

    Google Scholar 

  8. This derivation follows that given by S. Ezekiel, S. P. Smith, and F. Zarinechti, in Optical Fiber Rotation Sensing, Chapter 1, Edited by W. K. Burns, Academic Press (1994).

    Google Scholar 

  9. H. J. Arditty and H. C. Lefevre, Opt. Lett. 6, 401 (1981).

    Article  Google Scholar 

  10. R. Ulrich, Opt. Lett. 5, 173 (1980).

    Article  Google Scholar 

  11. H. C. Lefevre, S. Vatoux, M. Papuchon, and C. Puech, ‘Integrated optics: a practical solution for the fiber-optic gyroscope’, Proc. SPIE 719, 101 (1986).

    Google Scholar 

  12. W. K. Burns, C. L. Chen, and R. P. Moeller, J. Lightwave Technol. LT-1, 98 (1983).

    Article  Google Scholar 

  13. K. Bohm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, Electron. Lett. 17, 352 (1981).

    Article  Google Scholar 

  14. R. F. Cahill and E. Udd, ‘Phase nulling optical gyro’, US Patent 4,299,490 (1981).

    Google Scholar 

  15. C. C. Cutler, S. A. Newton, and H. J. Shaw, Opt. Lett. 5, 488 (1980).

    Article  Google Scholar 

  16. J. L. Davis and S. Ezekiel, ‘Techniques for shot-noise limited inertial rotation measurement using a multiturn fiber Sagnac interferometer’, Proc. SPIE 157, 131 (1978).

    Article  Google Scholar 

  17. R. F. Cahill and E. Udd, Opt. Lett. 4, 93 (1979)

    Article  Google Scholar 

  18. A. Elberg and G. Schiflner, Opt. Lett. 10, 300 (1985).

    Article  Google Scholar 

  19. R. A. Bergh, ‘Dual-ramp closed-loop fiber-optic gyroscope’, Proc. SPIE 1169, 429 (1989).

    Google Scholar 

  20. R. P. Moeller, W. K. Burns, and N. J. Frigo, J. Lightwave Technol. 7, 262 (1989).

    Article  Google Scholar 

  21. S. C. Lin and T. G. Giallorenzi, Appl. Opt. 18, 915 (1979).

    Article  Google Scholar 

  22. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 7, 282 (1982).

    Article  Google Scholar 

  23. R. A. Bergh, B. Culshaw, C. C. Cutler, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 7, 563 (1982).

    Article  Google Scholar 

  24. N. J. Frigo, H. F. Taylor, L. Goldberg, J. F. Weller, and S. C. Rashleigh, Opt. Lett. 8, 119 (1983).

    Article  Google Scholar 

  25. K. Petermann, Opt. Lett. 7, 623 (1982).

    Article  Google Scholar 

  26. S. L. A. Carrrara, B. Y. Kim, and H. J. Shaw, Opt. Lett. 12, 214–216 (1987).

    Article  Google Scholar 

  27. E. C. Kintner, Opt. Lett. 6, 154–156 (1981).

    Article  Google Scholar 

  28. E. Jones and J. W. Parker, Electron. Lett. 22, 54–56 (1986).

    Article  Google Scholar 

  29. J. Goodman, in Statistical Optics, John Wiley & Sons, 1985.

    Google Scholar 

  30. S. L. A. Carrara, ‘Drift reduction in optical fiber gyroscopes’, Ph.D. dissertation, Stanford University (1988).

    Google Scholar 

  31. B. Szafraniec and J. Blake, J. Lightwave Technol. 12, 1679 (1994).

    Article  Google Scholar 

  32. E. Kiesel, ‘Impact of modulation induced signal instabilities on fiber gyro performance’, Proc. SPIE 838, 129 (1987).

    Google Scholar 

  33. S. L. A. Carrara, ‘Drift caused by phase modulator non-linearities in fiber gyroscopes’, Proc. SPIE 1267, 187–191 (1990).

    Google Scholar 

  34. B. Y. Kim, H. C. Lefevre, R. A. Bergh, and H. J. Shaw, Proc. SPIE, 425, paper 16, (1983).

    Google Scholar 

  35. D. M. Shupe, Appl. Opt. 19, 654–655 (1980).

    Article  Google Scholar 

  36. R. A. Bergh, ‘All-fiber gyroscope with optical-Kerr effect compensation’, Ph.D. dissertation, Stanford University (1983).

    Google Scholar 

  37. R. P. Moeller and W. K. Burns, Opt. Lett. 16, 1902 (1991).

    Article  Google Scholar 

  38. R. J. Fredricks and R. Ulrich, Electron. Lett. 20, 330 (1984).

    Article  Google Scholar 

  39. J. Blake, J. Feth, and B. Szafraniec, ‘Configuration control of mode coupling errors’, US Patent No. 5,377,283.

    Google Scholar 

  40. J. Blake, ‘Magnetic field sensitivity of depolarized fiber optic gyros’, Proc. SPIE 1367, 81 (1990).

    Google Scholar 

  41. S. K. Sheem, Appl. Phys. Lett. 37, 869 (1980).

    Article  Google Scholar 

  42. G. Trommer, H. Poisel, W. Buhler, E. Hartl, and R. Muller, Appl. Opt. 29, 5360 (1990).

    Article  Google Scholar 

  43. G. Trommer, E. Hartl, and R. Muller, ‘Progress in passive fiber optic gyroscope development’, Proc. SPIE 2360, 438 (1994).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Chapman & Hall

About this chapter

Cite this chapter

Blake, J. (1998). Fiber optic gyroscopes. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5787-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5787-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7651-4

  • Online ISBN: 978-1-4615-5787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics