Skip to main content

Progress in optical fiber interferometry

  • Chapter
Optical Fiber Sensor Technology

Part of the book series: Optoelectronics, Imaging and Sensing ((OISS,volume 2))

Abstract

The implementation of many of the classic interferometers in an all fiber format has revitalized the field of interferometry; this has produced newtypes of interferometer such as the ring resonator which can be operated as an extremely high resolution optical spectrum analyzers, novel based fiber components and an entirely new generation of sensors offering many important measurement opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mclntyre, P. D. and Synder, A. W., 1973, Power transfer between optical fibres, Opt. Soc.Am. No. 12, 1518–1527.

    Google Scholar 

  2. Buckman, A. B., 1992, Guided Wave Photonics, Saunders College Publishing, San Francisco.

    Google Scholar 

  3. Yariv, A., 1973, Coupled mode theory for guided-wave optics, IEEE J. Quantum Electron. QE-9: 919–933.

    Article  Google Scholar 

  4. Jackson, D. A., Priest, R. P., Dandridge, A. and Tveten, A. B., 1980, Elimination of drift in a single-mode optical fibre interferometer using a piezo-electrical stretched coiled fibre. Applied Optics, 19, 2926.

    Article  Google Scholar 

  5. Kersey, A. D., Corke, M., Jackson, D. A. and Jones, J. C. D., 1983, All fibre Michelson interferometer, Electron Letts., 19, 471.

    Article  Google Scholar 

  6. Yariv, A., 1987, Operator algebra for propagation problems involving phase conjunction and non reciprocal elements, Applied Optics, 26, 4538.

    Article  Google Scholar 

  7. Martinelli, M., 1989, A universal compensator for polarization changes induced by birefringence on a retracing beam, Optics. Communs. 72, 341–344.

    Article  Google Scholar 

  8. Kersey, A. D., Marrone, M. J. and Davis, M. A., 1991, Polarisation insensitive fibre optic Michelson interferometer, Electron. Letts. 27, 518–519.

    Article  Google Scholar 

  9. Marrone, M. J., Kersey, A. D. and Dandridge, A., 1992, Polarisation independent array configurations based on Michelson interferometer networks, Distributed and Multiplexed Fibre Optic Sensors II, Boston, A. D. Kersey and J. P. Dakin, Eds. SPIE.Vol. 1797, 196–200.

    Google Scholar 

  10. Shurcliff, W. A., 1962, Polarised Light, Oxford Univ. Press, London.

    Google Scholar 

  11. Yariv, A., 1991, Optical Electronics (4th edn), Saunders College Pub. (Division of Holt, Rinehart and Winston), San Francisco.

    Google Scholar 

  12. Kersey, A. D., Jackson, D. A. and Corke, M., 1983, A simple fibre Fabry-Perot sensor, Opt. Communications, 45, 71.

    Article  Google Scholar 

  13. Gerges, A. S., Newson, T. P., Farahi, F., Jones, J. C. D. and Jackson, D. A., 1988, A hemispherical air cavity fibre Fabry-Perot sensor, Optics Comm., 68, 157–160.

    Article  Google Scholar 

  14. Born, M. and Wolf, E., 1986, Principles of Optics (6th edn), Pergamon, Oxford.

    Google Scholar 

  15. Jackson, D. A., 1985, Monomode optical fibre interferometers for precision measurements, J. Phys. E. Sci. Instrum. Instrument Science and Technology, 18, 981–1001.

    Article  Google Scholar 

  16. Santos, J. L., Leite, A. P. and Jackson, D. A., 1992, Optical fibre sensing with a low-finesse Fabry-Perot cavity, Applied Optics. 31, 7361–7366.

    Article  Google Scholar 

  17. Stokes, L. F., Chodorow, M. and Shaw, H. J., 1982, All single mode fibre resonators, Opt. Letts. 7, 288–290.

    Article  Google Scholar 

  18. Yve, C. Y., Peng, J. D., Liao, Y. B. and Zhou, B. K., 1988, Fibre ring resonator with finesse of 1260, Elect. Lett. 24, 622–623.

    Article  Google Scholar 

  19. Stokes, L. F., Chodorow, M. and Shaw, H. J., 1982, All fiber stimulated Brillouin ring laser with sub-milliwatt pump threshold, Opt. Lett, 7, 509–511.

    Article  Google Scholar 

  20. Dakin, J. P., Pearce, D. A., Wade, C. A. and Strong, A., 1987, A novel distributed optical fibre sensing system enabling location of disturbance in a Sagnac loop interferometer, Proc. O.E. Fibre, 1987, San Diego (Proc. SPIE, 838) Paper 18.

    Google Scholar 

  21. Spammer, S. J. and Swart, P. L., 1995, Differentiating Mach-Zehnder interferometer, Applied Optics, 34, 2350–23533.

    Article  Google Scholar 

  22. Bergh, B. A., Lefevre, H. C. and Shaw, H. J., 1981, All single-mode fibre optic gyroscope with long term stability, Opt. Lett. 6, 502–504.

    Article  Google Scholar 

  23. Booysen, A., 1994, Sensor applications of a reflective fibre optic ring interferometer, Ph.D. thesis, Rand Afrikaans University, Johannesburg, RSA.

    Google Scholar 

  24. Drain, L. E., 1980, The Laser Doppler Technique, John Wiley & Sons.

    Google Scholar 

  25. Dandridge, A., Tveten, A. B. and Giallorenzi T. G., 1982, Homodyne demodulation scheme for fibre optic sensors using phase generated carrier, IEEE. J. Quantum Electron. QE-18, 1647–1653.

    Article  Google Scholar 

  26. Bush, I. J., Sherman, D. R. and Bostick, J. A., 1992, Time-division multiplexed inter-ferometric demodulation technique with 5 million samples per second capability, Distributed and Multiplexed Fibre Optic Sensors II, J. P. Dakin and A. D. Kersey, Eds. Proc. SPIE 1797, 242–248.

    Google Scholar 

  27. Kersey, A. D., Williams, K. J., Dandridge, A. and Weller, J. F., 1989, Characterisation of a diode laser-pumped Nd: YAG ring laser for fibre sensor applications, Springer-Verlag Proc. in Physics Vol. 44, 172–178, Optical Fibre Sensors, H. J. Arditty, J. P. Dakin and R. Th. Kersten, Eds Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  28. Sakai, I., Youngquist, R. C. and Party, G., 1987, Multiplexing of optical fibre sensors using a frequency-modulated source and gated output, J. Lightwave Tech., LT5, 932–940.

    Article  Google Scholar 

  29. New Focas Ltd, USA.

    Google Scholar 

  30. Dakin, J. P., 1992, Distributed optical fibre sensors, Distributed and Multiplexed Fiber Optic Sensors II, J. P. Dakin and A. D. Kersey, Eds. Proc. SPIE 1797, Boston, 76–108.

    Google Scholar 

  31. France, P. W., 1991, Optical Fibre Lasers and Amplifiers, Blackie, Scotland.

    Google Scholar 

  32. Lefevre H. C, 1993, The Fibre Optic Gyroscope, Artech House, Boston.

    Google Scholar 

  33. Kwong, N. S. K., Lau, K. Y., Bar-Chaim, N., Ury, I. and Lee, K. J., 1987, High power high efficiency window buried heterostructure GaAlAs superluminescent diode with an integrated absorber, Appl. Phys. Letts, 151, 1879–1881.

    Article  Google Scholar 

  34. Safin, S. A., Semenov, A. T., Shidlovski, V. R., Zuchov, N. A. and Kurnyavko, Y. V., 1992, High power 0.82 um superluminescent diodes with extremely low Fabry-Perot modulation depth, Proc. 8th OFS Conf., Monterey, Calif., 78–80.

    Google Scholar 

  35. Kwong, N. S. K., Bar Chaim, N. and Chen, T., 1989, High-power 1.3 mm superluminescent diode, Appl. Phys. Letts, 54, 298–300.

    Article  Google Scholar 

  36. Kim, B. Y., 1990, Broadband fibre sources for gyroscopes, Proc. 7th OFS Conf., Sydney, 129–133.

    Google Scholar 

  37. Petermann, K. and Weidel, E., 1981, Semiconductor laser noise in an interferometer system, IEEE. J. Quantum Electron. QE-17, 1251–1256.

    Article  Google Scholar 

  38. Gerges, A. S., Newson, T. P. and Jackson, D. A., 1990, Coherence tuned fiber-optic sensing system, with self-initialisation, based on a multimode laser diode, Appl. Opt. 29,4473–4480.

    Article  Google Scholar 

  39. Bosselman, T. and Ulrich, R., 1984, High accuracy position-sensing with fibre coupled while light interferometers, Proc. 2nd Int. Conf. on Optical Fibre Sensors, Stuttgart (Berlin: UDE), 361–364.

    Google Scholar 

  40. Bosselmann, T., 1987, Optical Fiber Sensors, A. N. Chester, S. Msrtellucci and A. M. V. Scheggi, Eds, Martinus Nijhoff, 429–432.

    Google Scholar 

  41. Liu, T. Y., Cory, J. and Jackson, D. A., 1993, Partially multiplexing sensor network exploiting low coherence interferometry, Applied Optics, 32(7), 1100–1103.

    Article  Google Scholar 

  42. Gerges, A. S., Newson, T. P. and Jackson, D. A., 1990, A coherence tuned fiberoptic sensing system, with self-initialisation, based upon a multimode laser diode. Applied Optics, 29(30), 4473–4480.

    Article  Google Scholar 

  43. Chen, S., Palmer, A. W., Grattan, K. T. V. and Meggitt, B. T., 1992, Digital signal processing techniques for electronically scanned optical-fiber white-light interferometry. Applied Optics, 31(28).

    Google Scholar 

  44. Rao, Y. J., Ning, Y. N. and Jackson, D. A., 1993, Synthesized source for white-light sensing systems, Optics Letters, 18, 462–464.

    Article  Google Scholar 

  45. Chen, S., Grattan, K. T. V., Meggitt, B. and Palmer, A. W., 1993, Instantaneous fringe order identification using dual broadband sources with widely spaced wavelength, Electron. Lett. 29, 334–335.

    Article  Google Scholar 

  46. Rao, Y. J. and Jackson, D. A., 1995, Long-distance fibre optic white-light displacement sensing system using a source-synthesizing technique, Electron. Letts., 31, 310–312.

    Article  Google Scholar 

  47. Lobo Ribeiro, A. B., Rao, Y. J. and Jackson, D. A., 1994, Multiplexing interrogation of interferometric sensors using dual multimode laser diode sources and coherence reading. Optics Communs. 109, 400–404.

    Article  Google Scholar 

  48. Rao, Y. J., Jackson, D. A., Jones, R. and Shannon, C, 1994, Development of Prototype fibre-optic based Fizeau pressure sensors with temperature compensation and signal recovery by coherence reading, Journal of Lightwave Technology, 12(9), 1685–1695.

    Article  Google Scholar 

  49. Egorov, S. A., Ershov, Y. A., Likhachiev, I. G. and Marnaev, A. N. 1992, Spectrally encoded fibre optic sensors based on Fabry-Perot interferometers, SPIE, Vol. 1972, 8th Meeting on Optical Engineering in Israel, 362–368.

    Google Scholar 

  50. Podoleanu, A. Gh., Taplin, S. R., Webb, D. J. and Jackson, D. A., 1993, Channelled spectrum liquid refractometer, Rev. Sci. Instrum, 64(10), Oct., 3028–3029.

    Article  Google Scholar 

  51. Kersey, A. D., 1993, Interrogation and multiplexing techniques for fiber Bragg grating strain sensors, SPIE, Vol. 2071, Distributed and Multiplexed Fiber Optic Sensors III, Boston, 30–48.

    Google Scholar 

  52. Rao, Y. J., Kalli, K., Brady, G., Webb, D. J., Jackson, D. A., Zhang, L. and Ben-nion, I., 1995, Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection, Electron. Lett., 31, 1009–1010.

    Article  Google Scholar 

  53. Brady, G., Kalli, K., Webb, D. J., Jackson, D. A., Reekie, L. and Archambault, J. L., 1995, Simultaneous interrogation of interferometric and Bragg grating sensors, Optics Letters, 20, 1340–1342.

    Article  Google Scholar 

  54. Bartlett, S. C, Farahi, F. and Jackson, D. A., 1990, Current sensing using Faraday rotation and a common path optical fiber heterodyne interferometer, Rev. Sci. Instrum. 61(9), Sept., 2433–2435.

    Article  Google Scholar 

  55. Rao, Y. J. and Jackson, D. A., 1994, Prototype fibre-optic based ultrahigh pressure remote sensor with built-in temperature compensation. Rev. Sci. Instrum. 65, 1695–1698.

    Article  Google Scholar 

  56. Lee, C. E., Taylor, H. F., Markus, A. M. and Udd, E., 1989, Optical fiber Fabry-Perot embedded sensor, Opt. Letts., 14, 1225–1227.

    Article  Google Scholar 

  57. Inci, M. N., Kidd, S. R., Barton, J. S. and Jones, J. D. C, 1993, High temperature miniature fibre optic interferometric thermal sensors, Meas. Science and Tech. 4, 382–387.

    Article  Google Scholar 

  58. Gerges, A. S. and Jackson, D. A., 1991, A fibre-optic based high temperature probe illuminated by a multimode laser diode, Optics Communs, 80, 210–214.

    Article  Google Scholar 

  59. Wang, A., Collapudi, S., May, R. G., Murphy, K. A. and Claus, R. O., 1992, Advances in sapphire fibre based intrinsic interferometric sensors, Opt. Letts. 17, 1544–1546.

    Article  Google Scholar 

  60. Farahi, F., Jones, J. D. C. and Jackson, D. A., 1991, High speed fiber-optic temperature sensor, Opt. Letts. 16, 1800–1802.

    Article  Google Scholar 

  61. Kidd, S. R., Sinha, P. G., Barton, J. S. and Jones, J. D. C. 1992, Utilisation of fibre Fabry-Perot interferometers in the determination of heat transfer transients in wind tunnels, Proc. 8th OFS, Monterey, Calif. 73–76.

    Google Scholar 

  62. Youngquist, R. C, Carr, S. and Davies, D. N., 1987, Optical coherence domain reflectometry; a new optical evaluation technique, Opt. Letts, 12, 158–160.

    Article  Google Scholar 

  63. Gusmeroli, V. and Martinelli, M., 1991, Distributed laser Doppler velocimeter, Opt. Letts. 16, 1358–1360.

    Article  Google Scholar 

  64. Chivaz, X., Marques-Weddle, F., Salathe, R. P., Novak, R. P. and Gilgen, H. H., 1992, High resolution reflectometry in biological tissues, Opt. Letts, 17, 4–6.

    Article  Google Scholar 

  65. Swanson, E. A., Huang, D., Hee, M. R., Fujimoto, J. G., Lin, G. P. and Puliafito, C. A. 1992, High speed optical coherence domain reflectometry, Opt. Letts. 17, 151–153.

    Article  Google Scholar 

  66. Chen, S., Wang, D. N., Grattan, K. T. V., Palmer, A. W. and Dick, A. L., 1993, A compact optical device for eye length measurement, Photonic Tech. Letts.

    Google Scholar 

  67. Hee, M. R., Izatt, J., Jacobson, M. J., Fujimoto, J. G. and Swanson, E. A., 1993, Femtosecond transillumination optical coherence tomography, Opt. Letts, 18, 950–952.

    Article  Google Scholar 

  68. Kersey, A. D., Jackson, D. A. and Cirke, M., 1985, Single-mode fibre optic magnetometer with DC bias field stabilisation, J. Lightwave Tech., LT-3, 836–840.

    Article  Google Scholar 

  69. Dagenais, D. M., Bucholtz, F., Koo, K. P. and Dandridge, A., 1989, Detection of low frequency magnetic signals in a magnetostrictive fibre-optic sensor with suppressed residual signal. J. Lightwave Tech., 7, 881–887.

    Article  Google Scholar 

  70. Bucholtz, F., Dagenais, D. M. and Koo, K. P., 1989, Optic magnetometer with 70ft Hz resolution, Electron. Letts, 25, 1719–1721.

    Article  Google Scholar 

  71. Bucholtz, F., Dagenais, D. M., Koo, K. P. and Vohra, S., 1990, Recent developments in fibre optic magnetostrictive sensors, Proc. SPIE, Vol. 1367, Fiber Optic and Laser Sensors VIII, Ramon P. DePaul, Eric Udd, Eds, 226–235.

    Google Scholar 

  72. Bartlett, S. C, Farahi, F. and Jackson, D. A., 1990, Current sensing using Faraday rotation and a common path optical fiber heterodyne interferometer, Rev. Sci. Instrum. 61, 2433–2435.

    Article  Google Scholar 

  73. Day, G. W., Deeter, M. N. and Rise, A. H., 1991, Faraday effect sensors: a review of recent progress, Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore and Z. Zhipend, Eds, SPIE Optical Engineering Press, Wuhan, China, 11–26.

    Google Scholar 

  74. Chitaree, R., Weir, K., Palmer, A. W. and Grattan, K. T. V. 1994, A highly birefrin-gent fibre polarization modulation scheme for ellipsometry: system analysis and performance, Measurement Science and Technology, 5, 1226–1232.

    Article  Google Scholar 

  75. Jackson, D. A., Kersey, A. D., Akhavan Leilabady, P. and Jones, J. D. C, 1986, High frequency non-mechanical optical linear polarisation state rotator. Phys. E. Sci. Instrum. 19, 146.

    Article  Google Scholar 

  76. Pierce, S. G., Corbett, R. E. and Dewhurst, R. J. 1993, An actively-stabilised fibre-optic interferometer for laser-ultrasonic flow detection, Review of Progress in Quantitative Non-destructive Evaluation, 12, 587–593.

    Article  Google Scholar 

  77. Harvey, D., McBride, R., Barton, A. S. and Jones, J. D. C, 1992, A velocimeter based on the fibre optic Sagnac interferometer, Measurement Science and Technology, 1077–1083.

    Google Scholar 

  78. Cummins, H. Z. and Swinney, H. L., 1970, Light Beating Spectroscopy, Progress in Optics, VIII, 133–200.

    Google Scholar 

  79. Kalli, K. and Jackson, D. A., 1992, Ring resonator optical spectrum analyzer with 20 kHz resolution, Optics Letters, 17(15), August, 1167–1169.

    Article  Google Scholar 

  80. Kalli, K. and Jackson, D. A., 1993, Analysis of the dynamic response of a ring resonator to a time-varying input signal, Optics Letters, 18(6), 465–467.

    Article  Google Scholar 

  81. Taplin, S., Podoleanu, A. Gh., Webb, D. J. and Jackson, D. A., 1993, Displacement sensor using channelled spectrum dispersed on a linear CCD array, Electronics Letters, 29(10), May, 896–897.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Chapman & Hall

About this chapter

Cite this chapter

Jackson, D.A. (1998). Progress in optical fiber interferometry. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5787-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5787-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7651-4

  • Online ISBN: 978-1-4615-5787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics