Skip to main content

Advances in Brachytherapy

  • Chapter
Advances in Radiation Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 93))

  • 114 Accesses

Abstract

Soon after the discovery of radioactivity in 1896, small encapsulated sources of radioactive materials were implanted in tumors to treat malignancies. Clinical use of radioactive sources at short distances from or inside a tumor volume is termed brachytherapy, as opposed to teletherapy, which employs a source of radiation external to the patient at a large distance (about 1 m) from the tumor. Brachytherapy continues to play an important role in the management of cancers of several sites, including the uterine cervix, endometrium, and prostate. Compared with conventional external beam therapy, the physical advantages of brachytherapy result from a superior localization of dose to the tumor volume. In brachytherapy, as radiation is continuously delivered over a period of time, repair of sublethal and potentially lethal damage, proliferation, and other cell kinetic effects modify the radiation response of tumor and normal tissues, resulting in complex dose-rate effects that also influence the therapeutic ratio for brachytherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nath R. 1995. Physical properties and clinical uses of brachytherapy radionuclides. In Williamson JF, Thomadsen BR, Nath R, eds. Brachytherapy Physics. Madison, WI: Medical Physics, pp. 7–37.

    Google Scholar 

  2. Henschke UK. 1960. Afterloading applicator for radiation therapy of carcinoma of the uterus. Radiology 74:834.

    PubMed  CAS  Google Scholar 

  3. Henschke UK, Hilaris BS, Mahan GD. 1964. Remote afterloading with intracavitary applicators. Radiology 83:344–345.

    PubMed  CAS  Google Scholar 

  4. Walstam R. 1960. Remotely controlled afterloading radiotherapy apparatus (a preliminary report). Phys Med Biol 7:225–228.

    Google Scholar 

  5. Walstam R. 1965. Studies on therapeutic short-distance and intracavitary gamma beam techniques. Acta Radiol Suppl 236:1–129.

    Google Scholar 

  6. O’Connell D, Joslin CAF, Howard N, Ramsey NW, Liversage WE. 1965. A remotely-controlled unit for the treatment of uterine carcinoma. Lancet 2:570.

    PubMed  Google Scholar 

  7. Wakabayashi M, Ohsawa T, Mitsuhashi H, Kikuchi Y, Mita M, Watanabe T, Saito K, Suda Y, Yushii M, Kato S, Koshibu R, Furuse M, Wakabayashi M. 1971. High dose rate intracavity using the RALSTRON. Introduction and Part I (Treatment of carcinoma of the uterine cervix). Nippon Acta Radiol 31:340–378.

    PubMed  CAS  Google Scholar 

  8. Mundinger F, Sauerwein K. 1966. Gamma med ein Gerät zur Bestrahlung von Hirngeschwülsten mit Radioisotopen. Acta Radiol 5:48–52.

    CAS  Google Scholar 

  9. Busch M, Makosi B, Schulz, Sauerwein K. 1977. Das Essener Nachlade-Verfahren fur die intrakavitare Strahlentherapie. Strahlentherapie 153:581–588.

    PubMed  CAS  Google Scholar 

  10. Glasgow GP. 1995. Principles of remote afterloading devices. In Williamson JF, Thomadsen BR, Nath R, eds. Brachytherapy Physics. Madison, WI: Medical Physics, pp. 485–502.

    Google Scholar 

  11. van der Laarse R, Edmunson GK, Luthmann RW, Prins TPE. 1991. Optimization of HDR brachytherapy dose distributions. Activity — The Selectron Users’ Newsletter 5:94–101.

    Google Scholar 

  12. van der Laarse R, de Boer RW. 1990. Computerized high dose rate brachytherapy treatment planning. In Martinez AA, Orton CG, Mould RF, eds. Brachytherapy HDR and LDR. Columbia, MD: Nucletron Corporation, pp. 169–183.

    Google Scholar 

  13. Renner WD, O’Conner TP, Bermudez NM. 1990. An algorithm for generation of implant plans for high-dose-rate irradiators. Med Phys 17:35–40.

    PubMed  CAS  Google Scholar 

  14. Edmunson GK. 1989. Dose specification in intraluminal implants. Activity — The Selectron Users’ Newsletter 2:16–17.

    Google Scholar 

  15. van der Laarse R. 1994. In Mould Rx, Battermann JJ, Martinez AA, Speiser BL, eds. Brachytherapy from Radium to Optimization. Veenendaal, the Netherlands: Nucletron Corporation.

    Google Scholar 

  16. Holmes T, Mackie TR, Simpkin D, Reckwerdt P. 1991. A unified approach to the optimization of brachytherapy and external beam dosimetry. Int J Radiat Oncol Biol Phys 20:859–873.

    PubMed  CAS  Google Scholar 

  17. Sloboda RS. 1992. Optimization of brachytherapy dose distributions by simulated annealing. Med Phys 19:955–964.

    PubMed  CAS  Google Scholar 

  18. Ezzell GA, Luthmann RW. 1995. Clinical implantation of dwell time optimization techniques for single stepping-source remote afterloaders. In Williamson JF, Thomadsen BR, Nath R, eds. Brachytherapy Physics. Madison, WI: Medical Physics, pp. 617–640.

    Google Scholar 

  19. Nath R, Gray L. 1987. Dosimetry studies on prototype Am sources for brachytherapy. Int J Radiat Oncol Biol Phys 13:897–905.

    PubMed  CAS  Google Scholar 

  20. Nath R, Peschel RE, Park CH, Fischer JJ. 1988. Development of an Am applicator for intracavitary irradiation of gynecologic cancers. Int J Radiat Oncol Biol Phys 14:969–978.

    PubMed  CAS  Google Scholar 

  21. Nath R, Park CH, King CR, Muench P. 1990. A dose computation model for 241Am vaginal applicators including the source-to-source shielding effects. Med Phys 17:833–842.

    PubMed  CAS  Google Scholar 

  22. Muench PJ, Nath R. 1992. Dose distributions produced by shielded applicators sing u241Am for intracavitary irradiation of tumors in the vagina. Med Phys 19:1299–1306.

    PubMed  CAS  Google Scholar 

  23. Sakelliou L, Sakellariou K, Sarigiannis K, Angelopoulos A, Perris A, Zarris G. 1992. Dose rate distributions around 60Co, 137Cs, l98Au, 192Ir, 241Am, 125I (models 6702 and 6711) brachytherapy sources and the nuclide 99Tcm. Phys Med Biol 37:1859–1872.

    PubMed  CAS  Google Scholar 

  24. Waterman FM, Holcomb DE. 1994. Dose distributions produced by a shielded vaginal cylinder using a high-activity iridium-192 source. Med Phys 21:101–106.

    PubMed  CAS  Google Scholar 

  25. Peschel RE, Dowling S, Nath R, et al. 1988. An intracavitary vaginal applicator using americium-241. Endocuriether/Hyperthermia Oncol 4:91–96.

    Google Scholar 

  26. Samuels M, Peschel RE, Papadopoulos D, et al. 1991. A feasibility study of intracavitary americium-241 for recurrent pelvic malignancies. Endocuriether/Hyperthermia Oncol 7:131–137.

    Google Scholar 

  27. Chung JY, Roberts K, Peschel RE, Nath R, Pourang R, Kacinski B, Wilson LD. 1997. Treatment of recurrent pelvic and selected primary gyncecologic malignancies with 241Am. Radiat Oncol Invest, submitted.

    Google Scholar 

  28. Holm HH, Juul N, Perdersen JF, Hansen H, Stroyer I. 1983. Transperineal 1-125 seed implantation in prostatic cancer guided by transrectal ultrasonography. J Urol 130:283–286.

    PubMed  CAS  Google Scholar 

  29. Blasko JC, Grimm PD, Radge H. 1993. Brachytherapy and organ preservation in the management of carcinoma of the prostate. Semin Radiat Oncol 3:240–249.

    PubMed  Google Scholar 

  30. Martel MK. 1995. Three-dimensional imaging techniques in brachytherapy. In Williamson JF, Thomadsen BR, Nath R, eds. Brachytherapy Physics. Madison, WI: Medical Physics, pp. 265–280.

    Google Scholar 

  31. Klevenhagen SC. 1973. An experimental study of the dose distribution in water around 137Cs tubes used in brachytherapy. Br J Radiol 46: 1073–1082.

    PubMed  CAS  Google Scholar 

  32. Krishnaswamy V. 1972. Dose distributions about 137Cs sources in tissue. Radiology 105: 181–184.

    PubMed  CAS  Google Scholar 

  33. Saylor WL, Dillard M. 1976. Dosimetry of 137Cs sources with the Fletcher-Suit gynecological applicator. Med Phys 3:117–119.

    PubMed  CAS  Google Scholar 

  34. Thomason C, Mackie TR, Lindstrom MJ, Higgins PD. 1991. The dose distribution surrounding 192Ir and 137Cs seed sources. Phys Med Biol 36:475–493.

    PubMed  CAS  Google Scholar 

  35. Thomason C, Mackie TR, Lindstron MJ. 1991. Effect of source encapsulation on the energy spectra of 192Ir and 137Cs seed sources. Phys Med Biol 36:495–505.

    PubMed  CAS  Google Scholar 

  36. Williamson JF. 1988. Monte Carlo and analytic calculation of absorbed dose near 137Cs intra-cavitary sources. Int J Radiat Oncol Biol Phys 15:227–237.

    PubMed  CAS  Google Scholar 

  37. Cerra F, Rodgers JE. 1990. Dose distribution anisotropy of the GammaMed IIi brachytherapy sources. Endocuriether/Hyperthermia Oncol 6:71–80.

    Google Scholar 

  38. Muench PJ, Meigooni AS, Nath R. 1991. Photon energy dependence of the sensitivity of radiochromic film and comparison with silver halide film and LiF TLDs used for brachytherapy dosimetry. Med Phys 18:769–775.

    PubMed  CAS  Google Scholar 

  39. Ling CC, Schell MC, Yorke ED, et al. 1985. Two-dimensional dose distribution of 125I seeds. Med Phys 12:652–655.

    PubMed  CAS  Google Scholar 

  40. Ling CC, Yorke ED, Spiro IJ, et al. 1983. Physical dosimetry of 125I seeds of a new design for interstitial implant. Int J Radiat Oncol Biol Phys 9:1747–1752.

    PubMed  CAS  Google Scholar 

  41. Rustgi SN. 1992. Photon spectral characteristics of a new double-walled iodine-125 source. Med Phys 19:927–931.

    PubMed  CAS  Google Scholar 

  42. Ling CC, Anderson LL, Shipley WU. 1979. Dose inhomogeneity in interstitial implants using 125I seeds. Int J Radiat Oncol Biol Phys 5:419–425.

    PubMed  CAS  Google Scholar 

  43. Nath R. 1993. New directions in radionuclide sources for brachytherapy. Semin Radiat Oncol 3:278–289.

    PubMed  Google Scholar 

  44. Nath R, Meigooni AS, Muench P, Melillo A. 1993. Anisotropy functions for 103Pd, 125I, and 192Ir interstitial brachytherapy sources. Med Phys 20:1465–1473.

    PubMed  CAS  Google Scholar 

  45. Nath R, Melillo A. 1993. Dosimetric characteristics of a double wall 125I source for interstitial brachytherapy. Med Phys 20:1475–1483.

    PubMed  CAS  Google Scholar 

  46. Interstitial Collaborative Working Group: Anderson LL, Nath R, Weaver KA, et al. eds. 1990. Interstitial Brachytherapy: Physical, Biological and Clinical Considerations. New York: Raven Press.

    Google Scholar 

  47. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS. 1995. Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM radiation therapy committee task group no. 43. Med Phys 22:209–234.

    PubMed  CAS  Google Scholar 

  48. Nath R, Bongiorni P, Rockwell S. 1990. The RBEs of 123I and 241Am photons relative to 226Ra photons for continuous low dose rate irradiations at dose rates of 0.17 to 0.73Gy/hr. Endocuriether/Hyperthermia Oncol 6:81–91.

    Google Scholar 

  49. Zellmer DL, Gillin MT, Wilson JF. 1992. Microdosimetric single event spectra of ytterbium-169 compared with commonly used brachytherapy sources and teletherapy beams. Int J Radiat Oncol Biol Phys 23:627–632.

    PubMed  CAS  Google Scholar 

  50. Hall EJ. 1985. The biological basis of endocurietherapy. Endocuriether/Hyperthermia Oncol 1:141–151.

    Google Scholar 

  51. King CR, Nath R, Rockwell S. 1988. Effects of continuous low dose rate irradiation: Computer simulations. Cell Tissue Kinet 21:339–351.

    PubMed  CAS  Google Scholar 

  52. Ling CC. 1992. Permanent implants using 198Au, 103Pd and 125I: Radiobiological considerations based on the linear-quadratic model. Int J Radiat Oncol Biol Phys 23:81–87.

    PubMed  CAS  Google Scholar 

  53. Nath R, Meigooni AS, Melillo A. 1992. Some treatment planning considerations for 103Pd and 125I permanent interstitial implants. Int J Radiat Oncol Biol Phys 22:1131–1138.

    PubMed  CAS  Google Scholar 

  54. Kelly H. 1916. Radium therapy and cancer of the uterus. Trans Am Gynecol Soc 41:532.

    Google Scholar 

  55. Bailey H, Quimby E. 1922. The use of radium in cancer of the female generative organs. Am J Obstet Gynecol 3:117–133.

    Google Scholar 

  56. Kucera H, Weghaupt K. 1986. Treatment of inoperable endometrial carcinnoma with intracavity high dose rate iridium irradiation. Strahlenther Onkol 9:508–514.

    Google Scholar 

  57. Taina E. 1981. High versus low dose rate intracavitary radiotherapy in the treatment of carcinoma of the uterus. Acta Obstet Gynecol Scand 103 (Suppl), 1–71.

    CAS  Google Scholar 

  58. Rotte K. 1989. Brachytherapy HDR and LDR. Holland, Nucletron p. 68.

    Google Scholar 

  59. Bjornsson M, Sorbe B. 1982. Intracavitary irradiation of endometrial carcinomas of the uterus in stage I using a “bulb technique”. Br J Radiol 55, 56–59.

    PubMed  CAS  Google Scholar 

  60. Snelling MD, Hanbert HE. 1979. The treatment of carcinoma of the cervix and endometrium using the Cathetron at the Middlesex Hospital. Clin Radiol 30:253–258.

    PubMed  CAS  Google Scholar 

  61. Sorbe B, Frankendal B. 1989. Intracavitary irradiation of endometrial carcinoma stage I by a high dose rate afterloading technique. Gynecol Oncol 33:135–145.

    PubMed  CAS  Google Scholar 

  62. Joslin CAF. 1980. High Dose Rate Afterloading in the Treatment of Cancer of the Uterus. London: British Institute of Radiology, p. 24.

    Google Scholar 

  63. Lybeert MLM, van Putten WLJ, Ribot JG, et al. 1989. Endometrial carcinoma: High dose rate brachytherapy in combination with external irradiation — a multivariate analysis of relapses. Radiother Oncol 16:245–252.

    PubMed  CAS  Google Scholar 

  64. Mandell L, Nori D. 1985 Postoperative vaginal radiation in endometrial cancer using a remote afterloading technique. Int J Radiat Oncol Biol Phys 11:473–478.

    PubMed  CAS  Google Scholar 

  65. Peschel RE, Healey G, Smith RJ. 1989. High dose rate remote aftrerloading for endometrial cancer. Endocuriether/Hyperthermia Oncol 5:209–214.

    Google Scholar 

  66. Riipa P, Seppo K, Kauppila MD. 1985. Comparison of Heyman packing and Cathetron after loading methods in the treatment of endometrial cancer. Br J Radiol 58:437–441.

    Google Scholar 

  67. Sorbe BG, Smeds AC. 1990. Postoperative vaginal irradiation with high dose rate afterloading technique in endometrial carcinoma stage I. Int J Radiat Oncol Biol Phys 18:305–314.

    PubMed  CAS  Google Scholar 

  68. Turner B, Knisely J, Kacinski B, Roberts K, Peschel R, Gumbs A, Rutherford T, Edracki B, Schwartz P, Chambers S, Chambers J, Kohorn E, Wilson LD. 1996. Post-operative high dose rate vaginal apex brachytherapy in stage I endometrial adenocarcinoma. Accepted as a poster presentation at The First Joint Meeting of the GEC-ESTRO and the American Brachytherapy Society, Tours, France, May 13-15.

    Google Scholar 

  69. Turner BC, Gumbs A, Peschel RE, Haffty B, Kacinski B, Wilson L. 1996. Curative high dose rate vaginal apex brachytherapy in stage I papillary serous carcinoma of the endometrium. Accepted as an Oral Presentation at The First Joint Meeting of the GEC-ESTRO and American Brachytherapy Society, Tours, France. May 13-15.

    Google Scholar 

  70. Nori D, Merimsky O, Batata M, Caputo T. 1994. Postoperative high dose-rate intravaginal brachytherapy combined with external irradiation for early stage endometrial cancer: A long-term follow-up. Int J Radiat Oncol Biol Phys 30:831–837.

    PubMed  CAS  Google Scholar 

  71. Noyes WR, Bastin K, Edwards SA, Buchler DA, Stitt JA, Thomadsen BR, Fowler JF, Kinsella T. 1995. Postopeative vaginal cuff irradiation using high dose rate remote afterloading: A phase II clinical protocol. Int J Radiat Oncol Biol Phys 32:1439–1443.

    PubMed  CAS  Google Scholar 

  72. Eifel PJ. 1992. High dose rate brachytherapy for carcinoma of the cervix: High tech or high rise? Int J Radiat Oncol Biol Phys 24:383–386.

    PubMed  CAS  Google Scholar 

  73. Orton DG. 1991. HDR vs LDR for ca cervix: High risk or biased reporting? Int J Radiat Oncol Biol Phys 24:387–388.

    Google Scholar 

  74. Orton CG, Seyedsadr M, Somnay A. 1991. Comparison of high and low dose rate remote afterloloading for cervix cancer and the importance of fractionation. Int J Radiat Oncol Biol Phys 21:1425–1434.

    PubMed  CAS  Google Scholar 

  75. Arai A, Nakano T, Morita S. 1992. High-dose-rate remote afterloading intracavitary radiation therapy for cancer of the uterine cervix — a 20-year experience. Cancer 69:175–180.

    PubMed  CAS  Google Scholar 

  76. Chen M, Lin F, Hong C, et al. 1991. High dose rate afterloading technique in the radiation treatment of uterine cervical cancer: 339 cases and 9 years experience in Taiwan. Int J Radiat Oncol Biol Phys 20:915–919.

    PubMed  CAS  Google Scholar 

  77. Koga K, Wantanabe K, Kawano M, et al. 1987. Radiotherapy for carcinoma of the uterine cervix by remotely controlled afterloading intracavitary system with high dose rate. Int J Radiat Oncol Biol Phys 13:615–618.

    PubMed  CAS  Google Scholar 

  78. Himmelman A, Holmberg E, Oden A, et al. 1985. Intracavitary irradiation of carcinoma of the cervix stage IB and ILA: A clinical comparison between a remote high dose rate after-loading system and a low dose rate manual system. Acta Radiol Oncol 24:139–144.

    Google Scholar 

  79. Teshima T, Chatani M, Hata K, et al. 1987. High dose rate intracavitary therapy for carcinoma of the uterine cervix: I. General figures of survival and complication. Int J Radiat Oncol Biol Phys 13:1035–1041.

    PubMed  CAS  Google Scholar 

  80. Streeter OE, Goldson AL, Chevalier C, et al. 1987. High dose rate Co-60 remote after-loading irradiation in cancer of the cervix in Haiti, 1977-1984. Int J Radiat Oncol Biol Phys 13:1035–1042.

    Google Scholar 

  81. Roman TN, Souhami L, Freeman CR, et al. 1991. High dose rate afterloading intracavitary therapy in carcinoma of the cervix. Int J Radiat Oncol Biol Phys 20:921–926.

    PubMed  CAS  Google Scholar 

  82. Joslin CAF. 1989. High activity source afterloading in gynecologic cancer and its future prospects. Ultrich Henschke Memorial Lecture. Endocuriether/Hyperthermia Oncol 5:69–81.

    Google Scholar 

  83. Utley JF, von Essen CF, Horn RA, et al. 1984. High dose rate afterloading brachytherapy in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 10:2259–2263.

    PubMed  CAS  Google Scholar 

  84. Shigematsu Y, Nishiyama K, Masake N, et al. 1983. Treatment of carcinoma of the uterine cervix by remotely controlled afterloading intracavity radiotherapy with high dose rate: A comparative study with a low dose rate system. Int J Radiat Oncol Biol Phys 9:351–356.

    PubMed  CAS  Google Scholar 

  85. Selke P, Roman TN, Souhami L, Freeman CR, Clark BG, Evans MDC, Pla C, Podgorsak EB. 1993. Treatment results of high dose rate brachytherapy in patients with carcinoma of the cervix. Int J Radiat Oncol Biol Phys 27:803–809.

    PubMed  CAS  Google Scholar 

  86. Fu KK, Phillips TL. 1990. High-dose-rate intracavitary brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 19:791–796.

    PubMed  CAS  Google Scholar 

  87. Hammer J, Zoidal JP, Altendorfer C, Seewald DH, Track C, Stummvoll W, Labeck W. 1993. Combined external and high-dose-rate intracavitary radiotherapy in the primary treatment of cancer of the uterine cervix. Radiother Oncol 27:66–68.

    PubMed  CAS  Google Scholar 

  88. Newman H, James K, Smith C. 1983. Treatment of cancer of the cervix with a high-dose-rate afterloading machine (the Cathetron). Int J Radiat Oncol Biol Phys 9:931–937.

    PubMed  CAS  Google Scholar 

  89. Le Pechoux C, Akine Y, Sumi M, Tokuuye K, Ikeda H, Yajima M, Yamada T, Tanemura K, Tsunematsu R, Ohmi K, Sonoda T. 1995. High dose rate brachytherapy for carcinoma of the uterine cervix: Comparison of two different fractionation regimens. Int J Radiat Oncol Biol Phys 31:735–741.

    PubMed  Google Scholar 

  90. Pechoux CL, Akine Y, Sumi M, Tokuuye K, Ikeda H, Yajima M, Yamada T, Tanemura K, Tsunematsu R, Ohmi K, Sonoda T. 1995. High dose rate brachytherapy for carcinoma of the uterine cervix: Comparison of two different fractionation regimens. Int J Radiat Oncol Biol Phys 31:735–741.

    PubMed  Google Scholar 

  91. Sarkaria JN, Petereit DG, Stitt JA, Hartman TJ, Chappell R, Thomadsen BP, Buchler DA, Fowler JF, Kinsella TJ. 1994. A comparison of the efficacy and complication rates of low dose-rate versus high dose-rate brachytherapy in the treatment of uterine cervical carcinoma. Int J Radiat Oncol Biol Phys 30:75–82.

    PubMed  CAS  Google Scholar 

  92. Pater FD, Sharma SC, Negi PS, Ghoshal S, Gupta BD. 1994. Low dose rate versus high dose rate brachytherapy in the treatment of carcinoma of the uterine cervix: A clinical trial. Int J Radiat Oncol Biol Phys 28:335–341.

    Google Scholar 

  93. Orton CG. 1995. Width of the therapeutic window: What is the optimal dose-per-fraction for high dose rate cervix cancer brachytherapy?. Int J Radiat Oncol Biol Phys 31: 1011–1013.

    PubMed  CAS  Google Scholar 

  94. Pasteau O. 1911. Traitment du cancer de la prostate par le radium. Rev Malad Nutr:363–367.

    Google Scholar 

  95. Whitmore WF Jr, Hilaris B, Grabstald H. 1972. Retropublic implantation of iodine 125 in the treatment of prostate cancer. J Urol 108:918–920.

    PubMed  Google Scholar 

  96. Porter AT, Blasko JC, Grimm PD, Reddy SM, Ragde H. 1995. Brachytherapy for prostate cancer. CA Cancer J Clin 45:165–178.

    PubMed  CAS  Google Scholar 

  97. Peschel RE, Fogel TD, Kacinski BM, Kelly K, Mate TP. 1985. Iodine-125 implants for carcinoma of the prostate. Int J Radiat Oncol Biol Phys 11:1777–1781.

    PubMed  CAS  Google Scholar 

  98. Morton JD, Peschel RE. 1988. A detailed analysis of the chronic complications from iodine-125 implant vs. external beam irradiation for prostate cancer. Endocuriether/Hyperthermia Oncol 4:113–118.

    Google Scholar 

  99. Fuks A, Leibel SA, Wallner KE, et al. 1991. The effect of local control on metastatic dissemination in carcinoma of the prostate: Long-term results in patients treated with 1-125 implantation. Int J Radiat Oncol Biol Phys 21:537–547.

    PubMed  CAS  Google Scholar 

  100. Hilaris BS, Fuks Z, Nori D, et al. 1991. Interstitial irradiation in prostate cancer: Report of ten-year results. In Rolf S, ed. Interventional Radiation Therapy: Techniques, Brachy-therapy. New York: Springer-Verlag, pp. 235–240.

    Google Scholar 

  101. Lytton B, Collins JT, Weiss RM, et al. 1979. Results of biopsy after early stage prostatic cancer prostatic cancer treatment by implantation of 1-125 seeds. J Urol 121:306–309.

    PubMed  CAS  Google Scholar 

  102. Blasko JC, Grimm PD, Ragde H. 1993. Brachytherapy and organ preservation in the management of carcinoma of the prostate. Semin Radiat Oncol 3:240–249.

    PubMed  Google Scholar 

  103. Butler WM, Merrick GS. 1996. 1-125 strand™ loading technique. Radiat Oncol Invest 4:48–49.

    Google Scholar 

  104. Wallner KW, Roy J, Zelefsky M, Fuks Z, Harrison L. 1994. Short-term freedom from disease progression after 1-125 prostate implantation. Int J Radiat Oncol Biol Phys 30:405–409.

    PubMed  CAS  Google Scholar 

  105. Wallner K, Roy J, Harrison L. 1995. Dosimetry guidelines to minimize urethral and rectal morbidity following transperineal 1-125 prostate brachytherapy. Int J Radiat Oncol Biol Phys 32:465–471.

    PubMed  CAS  Google Scholar 

  106. Blasko JC, Wallner K, Grimm PD, Radge H. 1995. Prostate specific antigen based disease control following ultrasound guided 125I implantation for stage T1/T2 prostatic carcinoma. J Urol 154:1096–1099.

    PubMed  CAS  Google Scholar 

  107. Martinez A, Edmundsen GK, Cox RS, et al. 1985. Combination of external beam irradiation and multiple-site perineal applicator (MUPIT) for the treatment of locally advanced or recurrent prostatic, anorectal, and gynecological malignancies. Int J Radiat Oncol Biol Phys 11:391–398.

    PubMed  CAS  Google Scholar 

  108. Puthawala AA, Syed AMN, Tansey L. 1985. Temporary iridium-192 implant in the management of carcinoma of the prostate. Endocuriether/Hyperthermia Oncol 1:25–33.

    Google Scholar 

  109. Mate TP, Gottesman J. 1995. Fractionated HDR conformai prostate brachy therapy. Proceedings of the 8th International Brachy therapy Conference. Nice, France, pp. 75–78.

    Google Scholar 

  110. Syed AMN, Puthawala A, Austin P, Cherlow J, Perley J, Tansey L, Shanberg A, Sawyer D, Baghdassarian R, Wachs B, Tomasulo J, Rao J, Syed R. 1992. Temporary iridium-192 implant in the management of carcinoma of the prostate. Cancer 69:2515–2524.

    PubMed  CAS  Google Scholar 

  111. Martinez A, Gonzalez J, Stromberg J, Edmundson G, Plunkett M, Gustafson G, Brown D, Yan D, Vicini F, Brabbins D. 1995. Conformai prostate brachytherapy: Initial experience of a phase I/II dose-escalating trial. Int J Radiat Oncol Biol Phys 33:1019–1027.

    PubMed  CAS  Google Scholar 

  112. Edmundson GK, Yan D, Martinez AA. 1995. Intraoperative optimization of needle placement and dwell times for conformai prostate brachytherapy. Int J Radiat Oncol Biol Phys 33:1257–1263.

    PubMed  CAS  Google Scholar 

  113. Chalkely T. 1980. Ocular melanoma task force report. Am J Ophthalmol 90:723–733.

    Google Scholar 

  114. Stallard HB. 1966. Radiotherapy for malignant melanoma of the choroid. Br J Ophthalmol 50:147–155.

    PubMed  CAS  Google Scholar 

  115. Packer S, Rotman M. 1980. Radiotherapy of choroidal melanoma with iodine-125. Ophthalmology 87:582–590.

    PubMed  CAS  Google Scholar 

  116. Packer S, Rotman M, Salanitro P. 1984. Iodine-125 irradiation of choroidal melanoma: Clinical experience. Ophthalmology 91:1700–1708.

    PubMed  CAS  Google Scholar 

  117. Shields JA, Augsburger JJ, Brady LW, Day JL. 1982. Cobaltplaque therapy of posterior uveal melanomas. Ophthalmology 89:1201–1207.

    PubMed  CAS  Google Scholar 

  118. Brady LW, Shields JA, Augsburger JJ, Day JL. 1982. Malignant intraocular tumors. Cancer 49:578–585.

    PubMed  CAS  Google Scholar 

  119. Petrovich Z, Luxton G, Langholz B, Astrahan MA, Liggett PE. 1992. Episcleral plaque radiotherapy in the treatment of uveal melanomas. Int J Radiat Oncol Biol Phys 24:247–251.

    PubMed  CAS  Google Scholar 

  120. Quivey JM, Char DH, Phillips TL, Weaver KA, Castro JR, Kroll, SM. 1993. High intensity 125-iodine (125I) plaque treatment of uveal melanoma. Int J Radiat Oncol Biol Phys 26: 613–618.

    PubMed  CAS  Google Scholar 

  121. Fontanesi J, Meyer D, Xu S, Tai D. 1993. Treatment of choroidal melanoma with 1-125 plaque. Int J Radiat Oncol Biol Phys 26:619–623.

    PubMed  CAS  Google Scholar 

  122. Valcarcel F, Valverde S, Cardenes H, Cajigal C, De La Torre A, Magallon R, Regueiro C, Encinas JL, Aragon G. 1994. Episcleral iridium-192 wire therapy for choroidal melanomas. Int J Radiat Oncol Biol Phys 30:1091–1097.

    PubMed  CAS  Google Scholar 

  123. Finger PT, Buffa A, Mishra S, Berson A, Bosworth JL, Vikram B. 1994. Palladium 103 plaque radiotherapy for uveal melanoma. Ophthalmology 101:256–263.

    PubMed  CAS  Google Scholar 

  124. Shields CL, Shields JA, DePotter PD, Singh AD, Hernandez C, Brady LW. 1995. Treatment of non-resectable malignant iris tumours with custom designed plaque radiotherapy. Br J Ophthal 79:306–312.

    CAS  Google Scholar 

  125. Yankauer S. 1922. Two cases of lung tumour treated bronchoscopically. New York Med J 21:741–742.

    Google Scholar 

  126. Armstrong JG. 1993. High dose rate remote afterloading brachytherapy for lung and esoph-ageal cancer. Semin Radiat Oncol 3:270–277.

    PubMed  Google Scholar 

  127. Bewwinek J, Bruton PA, et al. 1991. The use of high dose rate endobronchial brachytherapy to palliate symptomatic endobronchial recurrence of previously irradiated bronchogenic carcinoma. Int J Radiat Oncol Biol Phys 22:23–30.

    Google Scholar 

  128. Burt P, O’Driscoll R, Notley M, et al. 1990. Intraluminal irradiation for the palliation of lung cancer with the high dose rate micro-Selectron. Thorax 45:765–768.

    PubMed  CAS  Google Scholar 

  129. Fass DE, Armstrong JG, Harrison LB, et al. 1990. Fractional high dose endobronchial treatment for recurrent lung cancer. Endocuriether/ Hypertherm Oncol 6:211–215.

    Google Scholar 

  130. Grafton C, Lam S, Voss N, et al. 1991. High dose rate endobronchial brachytherapy using the Microselectron (abstr). Lung Cancer 7(Suppl. 1):97.

    Google Scholar 

  131. Hatlevoll R, Karlsen K, Aamdal S, et al. 1991. Endobronchial radiotherapy for malignant bronchial obstruction or recurrence (abstr). Lung Cancer 7(Suppl. 1):95.

    Google Scholar 

  132. Miller J, Phillips T. 1990. Neodymium-YAG laser and brachytherapy in the management of inoperable bronchogenic carcinoma. Selectron Brachyther J 1(Suppl. ••):23–29.

    Google Scholar 

  133. Seagren S, Harreil J. 1990. Prospective trial of palliative high dose rate endobronchial irradiation with or without laser for recurrent non-small cell lung cancer (abstr). Proc Am Soc Clin Oncol 9:224.

    Google Scholar 

  134. Nori D, Hilaris BS, Martini N. 1987. Intraluminal irradiation in bronchogenic carcinoma. Surg Clin North Am 67:1093–1102.

    PubMed  CAS  Google Scholar 

  135. Macha HN, Koch K, Stadler M, Schumacher W, Kurmacher D. 1987. New technique for treating occlusive and stenosing tumours of the trachea and main bronchi: Endobronchial irradiation by high dose iridium-192 combined with laser canalization. Thorax 42:511–515.

    PubMed  CAS  Google Scholar 

  136. Aygun C, Weiner S, Scariato A, Spearman D, Stark L. 1992. Treatment of non-small cell lung cancer with external beam: Radiotherapy and high dose rate brachytherapy. Int J Radiat Oncol Biol Phys 23:127–132.

    PubMed  CAS  Google Scholar 

  137. Speiser B, Spratling L. 1992. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation. Int J Radiat Oncol Biol Phys 24:551–553.

    Google Scholar 

  138. Zajac AJ, Kohn ML, Heiser D, Peters JW. 1993. High-dose rate intraluminal brachytherapy in the treatment of endobronchial malignancy. Radiology 187:571–575.

    PubMed  CAS  Google Scholar 

  139. Chang L-F, Horvath J, Peyton W, Ling S-S. 1994. High dose rate afterloading brachytherapy in malignant airway obstruction of lung cancer. Int J Radiat Oncol Biol Phys 28:589–596.

    PubMed  CAS  Google Scholar 

  140. Sur RK, Mahomed GA, Pacella JA, Levin VC, Feldman C, Donde B. 1995. Initial report on the effectiveness of high dose rate brachytherapy in the treatment of hemoptysis in lung cancer. Endocuriether/Hyperthermia Oncol 11:2.

    Google Scholar 

  141. Sur RK, Singh DP, Sharma SC, et al. 1992. Radiation therapy of esophageal cancer: Role of high dose rate brachytherapy. Int J Radiat Oncol Biol Phys 22:1043–1046.

    PubMed  CAS  Google Scholar 

  142. Fontanesi J, Rodriguez R, Robison JC. 1989. Intracavitary irradiation as a primary treatment for unresectable esophageal carcinoma. Endocuriether/Hypertherm Oncol 5:231–234.

    Google Scholar 

  143. Flores AD. 1989. Cancer of the Oesophagus and Cardia: An Overview of Radiotherapy. Proceedings of the Brachytherapy Working Conference 5th International Selectron Users’ Meeting. Hauge, The Netherlands. Netherlands: Nucletron International, pp. 427–438.

    Google Scholar 

  144. Hishikawa Y, Kurisu K, Taniguchi M, et al. 1991. High dose rate intraluminal brachytherapy for esophageal cancer: 10 years experience in Hyogo College of Medicine. Radiother Oncol 21:107–114.

    PubMed  CAS  Google Scholar 

  145. Gaspar L, Barnett R, Kocha WI, et al. 1992. High dose rate esophageal brachytherapy: Initial experience. Endocuriether/Hypertherm Oncol 8:5–10.

    Google Scholar 

  146. Kaul TK, Rowland CG, Pagliero KM. 1989. Carcinoma of the esophagus: Treatment with radical surgery or brachytherapy. Proceedings of the Brachytherapy Working Conference 5th Internations Selectron Users’ Meeting. Hague, The Netherlands. Netherlands: Nucletron, pp. 449–458.

    Google Scholar 

  147. Wei-bo Y. 1989. Brachytherapy of carcinoma of the esophagus in China. Proceedings of the Brachytherapy Working Conference 5th International Selectron Users’ Meeting. Hague, The Netherlands. Netherlands: Nucletron International, pp. 439–441.

    Google Scholar 

  148. Harey M, Nishio M, Kagami Y, Narimatsu N, Saito A, Sakurai T. 1992. Intracavitary brachytherapy combined with external-beam irradiation for squamous cell carcinoma. Int J Radiat Oncol Biol Phys 24:235–240.

    Google Scholar 

  149. Gaspar LE, Qian C, Kocha WI, Coia LR, Herskovic A, Graham M. 1995. A phase I/II study of external beam radiation, brachytherapy and concurrent chemotherapy in localized cancer of the esophagus (RTOG 9207): Preliminary toxicity report (abstr). Int J Radiat Oncol Biol Phys 32(Suppl. 1):160.

    Google Scholar 

  150. Suit H, Spiro I. 1995. Radiation as a therapeutic modality in sarcomas of soft tissue. Hematol Oncol Clin North Am 9:733–746.

    PubMed  CAS  Google Scholar 

  151. Rosenberg SA, Tepper J, Glatstein E, et al. 1982. The treatment of soft-tissue sarcomas of the extremities: Prospective randomized evaluation of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy. Ann Surg 196: 305–315.

    PubMed  CAS  Google Scholar 

  152. Pisters PWT, Harrison LB, Leung DHY, Woodruff JM, Casper ES, Brennan MF. 1996. Long-term results of a prospectiove randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J Clin Oncol 14:859–868.

    PubMed  CAS  Google Scholar 

  153. Meigooni AS, Meli JA, Nath R. 1988. A comparison of solid phantoms with water for dosimetry of 125I, model 6702 brachytherapy sources. Med Phys 15:695–701.

    PubMed  CAS  Google Scholar 

  154. Meigooni AS, Nath R. 1992. Tissue inhomogeneity correction for brachytherapy sources in a heterogeneous phantom with cylinder symmetry. Med Phys 19:401–408.

    PubMed  CAS  Google Scholar 

  155. Teirstein PS, Massullo V, Jani S, Popma J, Mintz GS, Russo RJ, Schatz RA, Guarnari EM, Steuterman S, Morris NB, Leon MB, Tripuraneni P. 1997. Catheter-based radiotherapy to inhibit restenosis after coronary stenting. New England J of Med 336:1697–1703.

    CAS  Google Scholar 

  156. Weintraub WS, Mauldin PD, Becker E, Kosinski AS, King SB III. 1995. A comparison of the costs of and quality of life after coronary angioplasty or coronary surgery for multivessel coronary artery disease. Results from the Emory angioplasty versus surgery trial. Circulation 92:2831–2840.

    PubMed  CAS  Google Scholar 

  157. Pocock SJ, Henderson RA, Rickards AF, Hampton JR, King SB III, Hamm CW, Puel J, Heub W, Goy JJ, Rodriguez A. 1995. Meta analysis of randomized trials comparing coronary angioplasty with bypass surgery. Lancet 346:1184–1189.

    PubMed  CAS  Google Scholar 

  158. Serruys PW, deJaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, van den Heuvel P, Delcan J, Morel M-A. 1994. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331:489–495.

    PubMed  CAS  Google Scholar 

  159. Fischman DL, Leon MB, Bairn DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman M, Heuser R, Almond D, Teirstein PS, Fiosh RD, Colombo A, Brinker J, Moses J, Shaknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S. 1994. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 331: 496–501.

    PubMed  CAS  Google Scholar 

  160. Fairchild RG, Bond VP. 1984. Photon activation therapy. Strahlentherapie 160:758–763.

    PubMed  CAS  Google Scholar 

  161. Nath R, Bongiorni P, Rockwell S. 1990. Iododeoxyuridine radiosensitization by low and high energy photons for brachytherapy dose rates. Radiat Res 124:249–258.

    PubMed  CAS  Google Scholar 

  162. Nath R, Bongiorni P, Rossi PI, Rockwell S. 1990. Enhanced IUdR radiosensitization by 241Am photons relative to 226Ra and 125I photons at 0.72Gy/hr. Int J Radiat Oncol Biol Phys 18:1377–1385.

    PubMed  CAS  Google Scholar 

  163. Fairchild RG, Kalef-Erza J, Packer S, et al. 1987. Samarium-145: A new brachytherapy source. Phys Med Biol 32:847–858.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nath, R., Wilson, L.D. (1998). Advances in Brachytherapy. In: Mittal, B.B., Purdy, J.A., Ang, K.K. (eds) Advances in Radiation Therapy. Cancer Treatment and Research, vol 93. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5769-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5769-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7644-6

  • Online ISBN: 978-1-4615-5769-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics