Advertisement

Recent Advances in External Electromagnetic Hyperthermia

  • V. Sathiaseelan
  • Bharat B. Mittal
  • Alan J. Fenn
  • Allen Taflove
Part of the Cancer Treatment and Research book series (CTAR, volume 93)

Abstract

The use of hyperthermia as an adjuvant cancer treatment to irradiation and chemotherapy, even though accepted by many practitioners as beneficial, has yet to be convincingly demonstrated in multicenter randomized phase III clinical trials. Two phase III clinical studies combining irradiation and hyperthermia performed in the United States [1,2] have shown benefit only in small tumors (≤3 cm in diameter). However, recently completed multicenter phase III clinical trials in Europe involving advanced primary or recurrent breast cancer [3], malignant melanoma [4], and inoperable pelvic tumors [5] are showing more positive results. These clinical studies have also reemphasized that there are still many major technical limitations to be overcome for hyperthermia to become routinely applicable and to make a significant impact on clinical outcome.

Keywords

Electrical Impedance Tomography Specific Absorption Rate Power Deposition Hyperthermia Treatment Regional Hyperthermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perez CA, Pajak T, Emami B, Hornback NB, Tupchong L, Rubin P. 1991. Randomized phase III study comparing irradiation and hyperthermia with irradiation alone in superficial measureable tumors. Am J Clin Oncol (CCT) 14:133–141.Google Scholar
  2. 2.
    Emami B, Scott C, Perez CA, Asbell S, Swift P, Grigsby P, Montesano A, Rubin P, Curran W, Delrowe J, Arastu H, Fu K, Moros E. 1996. Phase III study of interstitial thermorad-iotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors: A prospectively controlled randomized study by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 34:1097–1104.PubMedGoogle Scholar
  3. 3.
    International Collaborative Hyperthermia Group: Vernon CC, et al. 1996. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled clinical trials. Int J Radiat Oncol Biol Phys 35:731–744.PubMedGoogle Scholar
  4. 4.
    Overgaard J, Gonzalez Gonzalez D, Hulshof MCCH, Arcangeli G, Dahl O, Mella O, Bentzen SM. 1996. Hyperthermia as an adjuvant to radiation therapy of recurrent or meta-static melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. Int J Hyperthermia 12:3–20.PubMedGoogle Scholar
  5. 5.
    Van der Zee JD, Gonzalez Gonzalez GC, van Rhoon, JDP, van Dijk JDP, van Putten WLJ, Hart AAM, Koper PCM, de Wit GA, de Charro FTh. 1996. Results of additional hyperthermia in inoperable pelvic tumors. In Franconi C, Arcangeli G, Cavalière R, eds. Hyperthermic Oncology 1996, Vol II, Rome: Tor Vergata. Proceedings of the 7 th International Congress on Hyperthermic Oncology, Rome, Italy, April 9-13, 1996, pp. 215-217.Google Scholar
  6. 6.
    Gautherie M (ed). 1990. Methods of Hyperthermia Control. Berlin: Springer-Verlag.Google Scholar
  7. 7.
    Gautherie M (ed). 1990. Thermal Dosimetry and Treatment Planning. Berlin: Springer-Verlag.Google Scholar
  8. 8.
    Gautherie M (ed). 1990. Methods of External Hyperthermic Heating. Berlin: Springer-Verlag.Google Scholar
  9. 9.
    Field SB, Hand JW (ed). 1990. An Introduction to the Practical Aspects of Clinical Hyperthermia. London: Taylor and Francis.Google Scholar
  10. 10.
    Sträube WL, Myerson RJ, Emami B, Leybovich LB. 1990. SAR patterns of external 915 MHz microwave applicators. Int J Hyperthermia 6:665–670.PubMedGoogle Scholar
  11. 11.
    Chou CK. 1992. Evaluation of microwave hyperthermia applicators. Bioelectromagnetics 13:581–597.PubMedGoogle Scholar
  12. 12.
    Lee ER. 1995. Electromagnetic superficial heating technology. In Seegenschmiedt MH, Fessenden P, Vernon CC, eds. Thermoradiot-herapy and Thermochemotherapy, Vol. 1: Biology, Physiology, Physics. New York: Springer-Verlag, pp. 193–217.Google Scholar
  13. 13.
    Sapozink MD, Cetas T, Corry PM, Egger MJ, Fessenden P and the NCI Hyperthermia Equipment Evaluation Contractors’ Group. 1988. Special Issue: Final report of the NCI Hyperthermia Equipment Evaluation Contractors Group — Part 1. Int J Hyperthermia 4.Google Scholar
  14. 14.
    Johnson RH, Robinson MP, Preece AW, Green JL, Pothecary NM, Railton CJ. 1993. Effect of frequency and conductivity on field penetration of electromagnetic hyperthermia applicators. Physi Med Biol 38:1023–1034.Google Scholar
  15. 15.
    Hand JW, Lagendijk JJW, Bach Andersen J, Bolomey JC. 1989. Quality assurance guidelines for ESHO protocols. Int J Hyperthermia 4:421–428.Google Scholar
  16. 16.
    Dewhirst MW, Philips TL, Samulski TV, Shrivastava P, Paliwal B, Pajak T, Gillim M, Sapozink M, Myerson R, Waterman FM, Sapareto SA, Corry P, Cetas TC, Leeper DB, Fessendon P, Kapp D, Oleson JR, Emami B. 1990. RTOG quality assurance guidelines for clinical trials using hyperthermia. Int J Radiat Oncol Biol Phys 18:1249–1259.PubMedGoogle Scholar
  17. 17.
    Johnson RH. 1986. New type of compact electromagnetic applicator for hyperthermia in the treatment of cancer. Electron Lett 22:591–593.Google Scholar
  18. 18.
    Gopal MK, Cetas TC. 1993. Current sheet applicators for clinical microwave hyperthermia. IEEE Trans. Microwave Theory Techniq 41: 431–437.Google Scholar
  19. 19.
    Prior MV, Lumori MLD, Hand JW, Lamaitre G, Schneider CJ, van Dijk JDP. 1995. The use of a current sheet applicator array for superficial hyperthermia: Incoherent versus coherent operation. IEEE Trans Biomed Eng 42:694–698.PubMedGoogle Scholar
  20. 20.
    Leybovich LB, Emami B, Myerson RJ, Sträube WL, Sathiaseelan V. 1991. Dual-antenna applicator for hyperthermia of tumors at intermediate depth. Int J Hyperthermia 7:455–464.PubMedGoogle Scholar
  21. 21.
    Nikawa Y, Kikuchi M, Terakawa T, Matsuda T. 1990. Heating system with a lens applicator for 430 MHz microwave hyperthermia. Int J Hyperthermia 6:671–684.PubMedGoogle Scholar
  22. 22.
    Matsuda T, Takatsuka S, Nikawa Y, Kikuchi M. 1990. Heating characteristics of a 430 MHz microwave heating system with a lens applicator in phantoms and miniature pigs. Int J Hyperthermia 6:685–696.PubMedGoogle Scholar
  23. 23.
    Hiraoka M, Nishimura Y, Masunaga S, Koishi M, Mitsumori M, Li YP, Nagata Y, Akuta K, Takahashi M, Abe M. 1995. Clinical evaluation of 430 MHz microwave hyperthermia system with lens applicator for cancer therapy. Med Biol Eng Comput 33:44–47.PubMedGoogle Scholar
  24. 24.
    Wust P, Stahl H, Dieckmann K, Scheller S, Löffel J, Riess H, Bier J, Jahnke V, Felix R. 1996. Local hyperthermia of N2/N3 cervical lymph node metastases: Correlation of technical/thermal parameters and response. Int J Radiat Oncol Biol Phys 34:635–646.PubMedGoogle Scholar
  25. 25.
    Lee ER, Wilsey TR, Tarczy-Hornoch P, Kapp DS, Fessenden P, Lohrbach A, Prionas SD. 1992. Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia. IEEE Trans Biomed Eng 39:470–483.PubMedGoogle Scholar
  26. 26.
    Leigh BR, Stea B, Cassady JR, Kittelson J, Cetas TC. 1994. Clinical hyperthermia with a new device: The current sheet applicator. Int J Radiat Oncol Biol Phys 30:945–951.PubMedGoogle Scholar
  27. 27.
    Ryan TP, Backus VL, Coughlin CT. 1995. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data. Int J Hyperthermia 11:187–209.PubMedGoogle Scholar
  28. 28.
    Diederich CJ, Stauffer PR. 1993. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia. Int J Hyperthermia 9:227–246.PubMedGoogle Scholar
  29. 29.
    Gopal MK, Hand JW, Lumori MLD, Alkhairi S, Paulsen KD, Cetas TC. 1992. Current sheet applicator arrays for superficial hyperthermia of chestwall lesions. Int J Hyperthermia 8:227–240.PubMedGoogle Scholar
  30. 30.
    Magin RL, Peterson AF. 1989. Noninvasive microwave phased arrays for local hyperhermia: A review. Int J Hyperthermia 5:429–450.PubMedGoogle Scholar
  31. 31.
    Gee W, Lee SW, Bong NK, Cain CA, Mittra R, Magin RL. 1984. Focused array hyperthermia applicator: Theory and experiment. IEEE Trans Microwave Theory Techniq 31:38–46.Google Scholar
  32. 32.
    Fenn AJ. 1991. Application of Adaptive Nulling to Electromagnetic Hyperthermia for Improved Thermal Dose Distribution in Cancer Therapy. Technical Report 917. Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, DTIC AD-A241026.Google Scholar
  33. 33.
    Fenn AJ, Diederich CJ, Stauffer PR. 1993. An adaptive-focusing algorithm for a microwave planar phased-array hyperthermia system. Lincoln Lab J 6:269–288.Google Scholar
  34. 34.
    Fenn AJ, Poe DS, Reuter CE, Taflove A. 1993. Noninvasive monopole phased array for hyperthermia treatment of cranial-cavity and skull-base tumors: Design, analysis, and phantom tests. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, California, October 28-31, Volume 15, pp. 1453–1454.Google Scholar
  35. 35.
    Reuter CE, Thiele ET, Taflove A, Piket-May MJ, Fenn AJ. 1994. Linear superposition of phased array antenna near field patterns using FD-TD method. Proceedings of the 10th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, California, March 21-26, pp. 459–466.Google Scholar
  36. 36.
    Fenn AJ. 1996. Adaptive focusing experiments with an air-cooled 915-MHz hyperthermia phased array for deep heating of breast carcinomas. Presentation at the meeting on surgical applications of energy sources, Estes Park, Colorado.Google Scholar
  37. 37.
    Datta NR, Bose AK, Kapoor HK, Gupta S. 1990. Head and neck cancers: Results of therm-oradiotherapy vs. radiotherapy. Int J Hyperthermia 6:479–486.PubMedGoogle Scholar
  38. 38.
    Valdagini R, Amichetti M. 1993. Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymphnodes in stage IV head and neck patients. Int J Radiat Oncol Biol Phys 28:163–169.Google Scholar
  39. 39.
    Mittal BB, Sathiaseelan V, Kies MS. 1990. Simultaneous localized 915 MHz external and interstitial microwave hyperthermia to heat tumors greater than 3 cm in depth. Int J Radiat Oncol Biol Phys 19:669–675.PubMedGoogle Scholar
  40. 40.
    Engin K, Tupchong L, Waterman FM, Nerlinger RT, Hoh LL, McFarlane JD, Leeper DB. 1993. Thermoradiotherapy with combined interstitial and external hyperthermia in advanced tumors in the head and neck with depth >3 cm. Int J Hyperthermia 9:645–654.PubMedGoogle Scholar
  41. 41.
    Wust P, Seebas M, Nadbony J, Felix R. 1995. Electromagnetic deep heating technology. In Seegenschmiedt MH, Fessenden P, Vernon CC, eds. Thermoradiotherapy and Thermochemotherapy, Volume 1: Biology, Physiology, Physics. New York: Springer-Verlag, pp. 219–251.Google Scholar
  42. 42.
    Turner PF, Schaefermeyer T. 1989. BSD-2000 approach for deep local and regional hyperthermia: Physics and technology. Strahlenther Onkol 165:738–741.PubMedGoogle Scholar
  43. 43.
    De Leeuw AAC, Mooibroek J, Lagendijk JJW. 1991. SAR-steering by patient positioning in the “Coaxial TEM“ system: Phantom investigation. Int J Hyperthermia 7:605–611.PubMedGoogle Scholar
  44. 44.
    Van Dijk JDP, Gonzalez Gonzalez D, Blank LECM. 1989. Deep local hyperthermia with a four aperture array system of large waveguide radiators. Results of simulation and clinical application. In Sugahara T, Saito M, eds. Hyperthermic Oncology, Vol. 1. London: Taylor and Francis, pp. 573–575.Google Scholar
  45. 45.
    Sathiaseelan V, Mittal BB, Taflove A, Piket-May MJ, Reuter C. 1991. Deep heating characteristics of an EM annular phased array hyperthermia applicator. Proceedings of the 13th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, Florida, Oct. 31 to Nov. 3, pp. 980–981.Google Scholar
  46. 46.
    Wust P, Nadobny J, Fahling H, Riess H, Koch K, John W, Felix R. 1990. Determinants and disturbances in controlling power deposition patterns by the hyperthermia system BSD-2000. Part 1: Clinical observations and phantom measurements. Strahlenther Onkol 166:822–830.PubMedGoogle Scholar
  47. 47.
    Myerson RJ, Leybovich L, Emami B, Grigsby PW, Sträube W, Von Gerichten D. 1991. Phantom studies and preliminary clinical experience with the BSD 2000. Int J Hyperthermia 7:937–951.PubMedGoogle Scholar
  48. 48.
    Schneider CJ, Van Dijk JDP, De Leeuw AAC, Wust P, Baumhoer W. 1994. Quality assurance in various radiative hyperthermia systems applying a phantom with LED matrix. Int J Hyperthermia 10:733–747.PubMedGoogle Scholar
  49. 49.
    Leybovich L, Myerson RJ, Emami B, Sträube WL. 1991. Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters. Int J Hyperthermia 7:917–935.PubMedGoogle Scholar
  50. 50.
    Reuter C, Piket-May MJ, Taflove A, Sathiaseelan V, Mittal BB. 1991. Unexpected whispering gallery effect of the BSD-2000 annular phased array. Proceedings of the 13th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, Florida, Oct. 31 to Nov. 3, pp. 995–996.Google Scholar
  51. 51.
    Sathiaseelan V, Mittal BB, Taflove A, Reuter C, Piket-May MJ, Pierce MC. 1992. Strategies for improving Sigma-60 deep hyperthermia applicator performance. In Gerner EW, ed. Hyperthermic Oncology, Vol. 1: Summary Papers, Proceedings of the 6th International Congress on Hyperthermic Oncology, Tucson, Arizona, USA, April 27 to May 1, 1992, p. 247.Google Scholar
  52. 52.
    Wust P, Fahling H, Jordan A, Nadobny J, Seebass M, Felix R. 1994. Development and testing of SAR-visualizing phantom for quality control in RF hyperthermia. Int J Hyperthermia 10:127–142.PubMedGoogle Scholar
  53. 53.
    Sapozink MD, Joszef G, Astrahan MA, Gibbs FA, Petrovich Z, Stewart RJ. 1990. Adjuvant pelvic hyperthermia in advanced cervical carcinoma. I: Feasibility, thermometry and device comparison. Int J Hyperthermia 6:985–996.PubMedGoogle Scholar
  54. 54.
    Myerson RJ, Scott CB, Emami B, Sapozink MD, Samulski TV. 1996. A phase I/II study to evaluate radiation therapy and hyperthermia for deep-seated tumors: A report of RTOG 89-08. Int J Hyperthermia 12:449–459.PubMedGoogle Scholar
  55. 55.
    Issels RD, Mittermuller J, Gerl A, Simon W, Ortmaier A, Denzlinger C, Sauer H, Wilmanns W. 1991. Improvement of local control by regional byperthermia combined with systemic chemotherapy (ifosfamide plus etoposide) in advanced sarcomas: Updated report on 65 patients. J Cancer Res Clin Oncol 117(Suppl. 4):S141–S147.PubMedGoogle Scholar
  56. 56.
    Anscher MS, Samulski TV, Leopold KA, Oleson JR. 1992. Phase I/II study of external radio frequency phased array hyperthermia and external beam radiotherapy in the treatment of prostate cancer: Techniques and results of intraprostatic temperature measurements. Int J Radiat Oncol Biol Phys 24:489–495.PubMedGoogle Scholar
  57. 57.
    Feldman HJ, Molls M, Adler S, Meyer-Schwickerath M, Sack H. 1991. Hyperthermia in eccentrically located pelvic tumors: Excessive heating of the perineal fat and normal tissue temperature. Int J Radiat Oncol Biol Phys 20:1017–1022.Google Scholar
  58. 58.
    Feldman HJ, Molls Krumpelmann S, Stuschke M, Sack H. 1993. Deep regional hyperthermia: Comparison between the annular phased array and the Sigma-60 applicator in the same patients. Int J Radiat Oncol Biol Phys 26:111–116.Google Scholar
  59. 59.
    Mittal BB, Sathiaseelan V, Shetty RM, Kiel KD, Pierce MC, Adelman W, Marymont MH. 1994. Regional hyperthermia in patients with advanced malignant tumors: Experience with the BSD-2000 annular phased-array system and Sigma-60 applicator. Endocurie/Hypertherm Oncol 10:223–236.Google Scholar
  60. 60.
    Riess H, Löffel J, Wust P, Rau B, Gremmler M, Speidel, A, Schlag P. 1995. A pilot study of a new therapeutic approach in the treatment of locally advanced stages of rectal cancer: Neoadjuvant radiation, chemotherapy and regional hyperthermia. Eur J Cancer 31A:1356–1360.PubMedGoogle Scholar
  61. 61.
    Leopold KA, Oleson JR, Clarke-Pearson D, Soper J, Berchuk A, Samulski TV, Page RL, Blivin J, Tomberlin JK, Dewhirst MW. 1993. Intraperitoneal cisplatin and regional hyperthermia for ovarian carcinoma. Int J Radiat Oncol Biol Phys 27:1245–1251.PubMedGoogle Scholar
  62. 62.
    Formenti SC, Shrivastava PN, Sapozink M, Jozsef G, Chan KK, Jeffers S, Morrow PC, Muggia FM. 1996. Abdomino-pelvic hypert hermia and intraperitoneal carboplatin in epithelial ovarian cancer: Feasibility, tolerance and pharmacology. Int J Radiat Oncol Biol Phys 35:993–1001.PubMedGoogle Scholar
  63. 63.
    Schneider CJ, Van Dijk JDP. 1991. Visualization by a matrix of light emitting diodes of interferences effects from a radiative four-applicator hyperthermia system. Int J Hyperthermia 7:355–366.PubMedGoogle Scholar
  64. 64.
    Sträube WL, Moros EG, Myerson RJ. 1995. Phase stability of a clinical phased array system for deep regional hyperthermia. Int J Hyperthermia 11:87–93.PubMedGoogle Scholar
  65. 65.
    de Leeuw AAC, Lagendijk JJW, Van den Berg PM. 1990. SAR distribution of the “coaxial TEM” system with variable aperture width: Measurements and model computations. Int J Hyperthermia 6:445–452.PubMedGoogle Scholar
  66. 66.
    Van Es CA, Wyrdeman HK, De Leeuw AAC, Mooibroek J, Lagendijk JJW, Battermann JJ. 1995. Regional hyperthermia of pelvic tumors using the Utrecht “Coaxial TEM” system: A feasibility study. Int J Hyperthermia 11:87–93.Google Scholar
  67. 67.
    Schneider CJ, Kuijer JPA, Colussi LC, Schepp CJ, van Dijk JDP. 1995. Performance evaluation of annular arrays in practice: The measurement of phase and amplitude patterns of radio-frequency deep body applicators. Med Phys 22:755–765.PubMedGoogle Scholar
  68. 68.
    Van Dijk JDP, Schneider C, Van Os R, Blank LECM, Gonzalez Gonzalez D. 1990. Results of deep body hyperthermia with large waveguide radiators. In Bicher HI, ed. Consensus on Hyperthermia for the 1990s. New York: Plenum Press, pp. 315–319.Google Scholar
  69. 69.
    Gonzalez Gonzalez D, Van Dijk JDP, Blank LECM. 1995. Radiotherapy and hyperthermia. Eur J Cancer 31A:1351–1355.PubMedGoogle Scholar
  70. 70.
    Rietbroek RC, Bakker PJM, Schilthuis MS, Postma AJ, Vording PJZVS, Gonzalez Gonzalez D, Kurth KH, Bakker AJ, Veenhof CHN. 1996. Feasibility, toxicity, and preliminary results of weekly loco-regional hyperthermia and cisplatin in patients with previously irradiated recurrent cervical carcinoma or locally advanced bladder cancer. Int J Radiat Oncol Biol Phys 34:887–893.PubMedGoogle Scholar
  71. 71.
    Fenn AJ, King GA. 1992. Adaptive radio-frequency hyperthermia-phased array system for improved cancer therapy: Phantom target measurements. Int J Hyperthermia 10:189–208.Google Scholar
  72. 72.
    Fenn AJ, King GA. 1996. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radio-frequency phased-array hyperthermia. IEEE Trans Biomedical Eng 43:273–280.Google Scholar
  73. 73.
    Rhee JG, Lee CKK, Osborn J, Levitt SH, Song CW. 1991. Precooling prevents overheating of subcutaneous fat in the use of RF capacitive heating. Int J Radiat Oncol Biol Phys 20:1009–1015.PubMedGoogle Scholar
  74. 74.
    Van Rhoon GC, Van der Zee J, Broekmeyer-Reurink MP, Visser AG, Reinhold HS. 1992. Radiofrequency capacitive heating of deep-seated tumors using pre-cooling of the subcutaneous tissues: Results on thermometry in Dutch patients. Int J Hyperthermia 8:843–854.PubMedGoogle Scholar
  75. 75.
    Lee CKK, Song CW, Rhee JG, Foy JA, Levitt SH. 1995. Clinical experience using 8MHz radiofrequency capacitive hyperthermia in combination with radiotherapy: Results of a phase I/ II study. Int J Radiat Oncol Biol Phys 32:733–745.PubMedGoogle Scholar
  76. 76.
    Lee CKK, Higgins PD, Levitt SH, Song CW. 1996. Thermotron RF-8 capacitive hyperthermia and radiotherapy for extensive chestwall recurrence of breast cancer: University of Minnesota. Hypertherm Oncol Proceedings of the 7th Int. Congress on Hyperthermic Oncology, Rome, Italy, April 9-13, pp. 289–291.Google Scholar
  77. 77.
    UR Ornitz RD, Hoffman LG, Scaranito CW, Anderson RF, Cavanaugh PJ. 1996. Clinical results using 8 MHz radiofrequency capacitive hyperthermia and radiotherapy for recurrent breast cancer. In Franconi C, Arcangeli G, Cavalière R, eds. Hyperthermic Oncology 1996, Vol II, Rome: Tor Vergata. Proceedings of the 7th International Congress on Hyperthermic Oncology, Rome, Italy, April 9-13, PP. 295–297.Google Scholar
  78. 78.
    Nussbaum GH, Sidi J, Dipalma M, Adams R, Ghnassia MD, Navarros P, Hand JW, Nagi M, Rotarsky M, Plaza NP, Ionescu-Goga M, Morel P, Alhomme P, Vannetzel JM, Bismuth H, Jasmin C. 1996. Production and manipulation of elevated temperatures in pig abdomen with a three-electrode capacitive heating device. Int J Hyperthermia 12:421–430.PubMedGoogle Scholar
  79. 79.
    Paulsen KD. 1990. Calculation of power deposition patterns in hyperthermia. In Gautherie M, ed. Thermal Dosimetry and Treatment Planning. Berlin: Springer-Verlag, pp. 57–113.Google Scholar
  80. 80.
    Roemer RB. 1990. Thermal dosimetry. In Gautherie M, ed. Thermal Dosimetry and Treatment Planning. Berlin: Springer-Verlag, pp. 119–207.Google Scholar
  81. 81.
    Wust P, Seebas M, Nadobny J, Deuflhard P, Monich P, Felix R. 1996. Simulation studies promote technological development of radio-frequency phased array hyperthermia. Int J Hyperthermia 12:477–494.PubMedGoogle Scholar
  82. 82.
    Sullivan DM, Ben-Yosef R, Kapp DS. 1993. Stanford 3D hyperthermia treatment planning system. Technical review and clinical summary. Int J Hyperthermia 9:627–643.PubMedGoogle Scholar
  83. 83.
    Lee ER, Sullivan DM, Kapp DS. 1992. Potential hazards of radiative electromagnetic hyperthermia in the presence of multiple metallic surgical clips. Int J Hyperthermia 8:809–817.PubMedGoogle Scholar
  84. 84.
    Mella O, Hornsleth SN, Ruppert M, Dahl O. 1996. Benefit and limitations of dose planning in regional hyperthermia: The clinicians view. In Franconi C, Arcangeli G, Cavaliere R, eds. Hyperthermic Oncology 1996, Vol II, Rome: Tor Vergata. Proceedings of the 7th International Congress on Hyperthermic Oncology, Rome, Italy, April 9-13, pp. 527–529.Google Scholar
  85. 85.
    Stalling D, Seebas M, Hege HC, Wust P, Deuflhard P, Felix R. 1996. Hyperplan-An integrated system for treatment planning in regional hyperthermia, Hyperthermic Oncology 1996, Vol. II, Proc. of the 7th Int. Congress on Hyperthermic Oncology, Rome, Italy, April 9-13, pp. 552–554.Google Scholar
  86. 86.
    Piket-May MJ, Taflove A, Lin WC, Katz DS, Sathiaseelan V, Mittal BB. 1992. Initial results for automated computational modeling of patient-specific electromagnetic hyperthermia. IEEE Trans Biomed Eng 39:226–236.PubMedGoogle Scholar
  87. 87.
    James BJ, Sullivan DM. 1992. Direct use of CT scans for hyperthermia treatment planning. IEEE Trans Biomed Eng 39:845–851.PubMedGoogle Scholar
  88. 88.
    Seebas M, Stalling D, Nadobny J, Wust P, Felix R, Deuflhard P. 1996. Three-dimensional finite element mesh generation for numerical simulations of hyperthermia treatments. In Franconi C, Arcangeli G, Cavaliere R, eds. Hyperthermic Oncology 1996, Vol II, Rome: Tor Vergata. Proceedings of the 7th International Congress on Hyperthermic Oncology, Rome, Italy, April 9-13, pp. 547–548.Google Scholar
  89. 89.
    Clegg ST, Das SK, Fullar E, Anderson S, Blivin J, Oleson JR, Samulski TV. 1996. Hyperthermia treatment planning and temperature distribution reconstruction: A case study. Int J Hyperthermia 12:65–76.PubMedGoogle Scholar
  90. 90.
    Das SK, Clegg ST, Anscher MS, Samulski TV. 1995. Simulation of electromagnetically induced hyperthermia: A finite element gridding method, Int J Hyperthermia 11:797–808.PubMedGoogle Scholar
  91. 91.
    Wust P, Nadobny J, Felix R, Deuflhard P, Louis A, John W. 1991. Strategies for optimized application of annular-phased-array systems in clinical hyperthermia. Int J Hyperthermia 7:157–173.PubMedGoogle Scholar
  92. 92.
    Wust P, Stahl H, Loffel J, Seebas M, Riess H, Felix R. 1995. Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. Int J Hyperthermia 11:151–167.PubMedGoogle Scholar
  93. 93.
    Samulski TV, Clegg ST, Das S, MacFall J, Prescott DM. 1994. Application of new technology in clinical hyperthermia. Int J Hyperthermia 10:389–394.PubMedGoogle Scholar
  94. 94.
    Clegg ST, Rosner G, Das S, Samulski TV. 1996. Can the minimum thermal dose be achieved? Proceedings of the 7th International Congress on Hyperthermic Oncology, Rome, Italy, April 9-13. Hyperthermic Oncol 2:561–563.Google Scholar
  95. 95.
    Paulsen KD, Lynch DR. 1991. Elimination of vector parasites in finite element maxwell solutions. IEEE Trans Microwave Theory Techniq 39:395–404.Google Scholar
  96. 96.
    Reuter CE. 1993. Ph.D. Dissertation, Northwestern University.Google Scholar
  97. 97.
    Sullivan DM, Buechler D, Gibbs FA. 1992. Comparison of measured and simulated data in an annular phased array using an inhomogeneous phantom, IEEE Trans Microwave Theory Techniq 40:600–604.Google Scholar
  98. 98.
    Clegg ST, Das SK, Zhang Y, MacFall J, Fullar E, Samulski TV. 1995. Verification of a hyperthermia model using MR thermometry. Int J Hyperthermia 11:409–424.PubMedGoogle Scholar
  99. 99.
    Samulski TV, Clegg ST, Das SK, MacFall J, Prescott DM. 1994. Application of new technology in clinical hyperthermia. Int J Hyperthermia 10:389–394.PubMedGoogle Scholar
  100. 100.
    Le Bihan D, Delannoy J, Levin RL. 1989. Temperature mapping with MR imaging of molecular diffusion: Application to hyperthermia. Radiology 171:853–857.PubMedGoogle Scholar
  101. 101.
    Samulski TV, MacFall J, Zhang Y, Grant W, Charles C. 1992. Non-invasive thermometry using magnetic resonance diffusion imaging: Potential for application in hyperthermic oncology. Int J Hyperthermia 8:819–829.PubMedGoogle Scholar
  102. 102.
    MacFall J, Prescott DM, Fullar E, Samulski TV. 1995. Temperature dependence of canine brain tissue diffusion coefficient measured in vivo with magnetic resonance echo-planar imaging. Int J Hyperthermia 11:73–86.PubMedGoogle Scholar
  103. 103.
    MacFall JR, Prescott DM, Charles HC, Samulski TV. 1996. 1H MRI phase thermometry in vivo in canine brain, muscle, and tumor tissue. Med Phys 23:1775–1782.PubMedGoogle Scholar
  104. 104.
    Wust P, Konstanczak P, Sander B, Knappe V, Schrtinder S, Wlodarczyk W, Frenzel T, Muller G, Felix R. 1996. Non-invasive thermometry performed by measuring the chemical shift of a lanthanide complex. In Franconi C, Arcangeli G, Cavaliere R, eds. Hyperthermic Oncology 1996, Vol II, Rome: Tor Vergata. Proceedings of the 7th International Congress on Hyperthermic Oncology, Rome, Italy, April 9-13, 1996, pp. 436–438.Google Scholar
  105. 105.
    Conway J, Hawley M, Mangnall Y, Amasha H, van Rhoon GC. 1992. Experimental assessment of electrical impedance imaging for hyperthermia monitoring. Clini Phys Physiol Measurement 13(Suppl. A): 185–189.Google Scholar
  106. 106.
    Moskowitz MJ, Ryan TP, Paulsen KD, Mitchell SE. 1995. Clinical implementation of electrical impedance tomography with hyperthermia. Int J Hyperthermia 11:141–149.PubMedGoogle Scholar
  107. 107.
    Paulsen KD, Moskowitz MJ, Ryan TP, Mitchell SE, Hoopes PJ. 1996. Initial in vivo experience with EIT as a thermal estimator during hyperthermia. Int J Hyperthermia 12:573–591.PubMedGoogle Scholar
  108. 108.
    Nagata Y, Hiraoka M, Akuta K, Abe M, Takahashi M, Jo S, Nishimura Y, Masunaga S, Fakuda M, Imura H. 1990. Radiofrequency therapy for malignant liver tumors. Cancer 65:1730–1736.PubMedGoogle Scholar
  109. 109.
    Mittal BB, Sathiaseelan V, Rademaker AW, Pierce MC, Johnson PM, Brand WN. 1991. Feasibility studies of an implantable telemetric sensor for deep hyperthermia applications. Int J Radiat Oncol Biol Phys 21:1353–1361.PubMedGoogle Scholar
  110. 110.
    Sapareto SA, Hopwood LE, Dewey WC. 1978. Combined effects of x-irradiation and hyperthermia in CHO cells for various temperatures and orders of application. Radiat Res 73:221–233.PubMedGoogle Scholar
  111. 111.
    Mittal BB, Emami B, Sapareto SA, Taylor FH, Abrath FG. 1984. Effects of sequencing of the total course of combined hyperthermia and radiation on the RIF-1 tumors. Cancer 54:2889–2897.PubMedGoogle Scholar
  112. 112.
    Overgaard J. 1980. Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding nor-mal tissue in vivo. Int J Radiat Oncol Biol Phys 6:1507–1517.PubMedGoogle Scholar
  113. 113.
    Ballou B, Levin G, Hakala TR, Solter D. 1979. Tumor location detected with radioactively labeled monoclonal antibody and external scintigraphy, Science 206:844–847.PubMedGoogle Scholar
  114. 114.
    Brady LW, Woo DV, Heindel ND, Markoe AM, Koprowski H. 1987. Therapeutic and diagnostic uses of modified monoclonal antibodies. Int J Radiat Oncol Biol Phys 13:1535–1544.PubMedGoogle Scholar
  115. 115.
    Dillman RO. 1989. Monoclonal antibodies for treating cancer. Ann Intern Med 111:592–603.PubMedGoogle Scholar
  116. 116.
    Herlyn DM, Steplewski A, Herlyn MF, Koprowski H. 1980. Inhibition of growth of colorectal carcinoma in nude mice by monoclonal antibody. Cancer Res 40:717–721.PubMedGoogle Scholar
  117. 117.
    Rosen ST, Zimmer AM, Goldman-Leikin RE, Gordon LI, Kazikiewicz JM, Kaplan EH, Variakojis D, Marder RJ, Dykewicz MS, Piergies A. 1987. Radioimmunodetection and radioimmunotherapy of cutaneous T-cell lymphomas using 131I labeled monoclonal antibody: An ICC study. J Clin Oncol 5:562–573.PubMedGoogle Scholar
  118. 118.
    Vriesendorp HM, Herpst JM, Leichner PK, Klein JL, Order SE. 1989. Polyclonal 90-yttrium-labeled antiferritin for refractory Hodgkin’s disease. Int J Radiat Oncol Biol Phys 17:815–821.PubMedGoogle Scholar
  119. 119.
    Mittal BB, Zimmer AM, Sathiaseelan V, Rosen ST, Radosevich JA, Rademaker AW, Saini A, Pierce MC, Webber DI, Spies SM. 1992. Effects of hyperthermia and iodine-131 anti-carcinoembryonic antigen monoclonal antibody on human xenografts in nude mice. Cancer 70:2785–2791.PubMedGoogle Scholar
  120. 120.
    Cope DA, Dewhirst MW, Friedman HS, Bigner DD, Zalutsky MR. 1990. Enhanced delivery of a monoclonal antibody F(ab′)2 fragment to subcutaneous human glioma xenografts using local hyperthermia. Cancer Res 50:1803–1809.PubMedGoogle Scholar
  121. 121.
    Gridley DS, Ewart KL, Cao JD, Stickney DR. 1991. Hyperthermia enhances localization of 111In-labeled hapten to bifunctional antibody in human colon tumor xenografts. Cancer Res 51:1515–1520.PubMedGoogle Scholar
  122. 122.
    Stickney DR, Gridley DS, Kirk GA, Slater JM. 1987. Enhancement of Monoclonal Antibody Binding to Melanoma with Single Dose Radiation or Hyperthermia. NCI Monograph No. 3, NIH Publication No. 87-2861, Bethesda, MD: National Institutes of Health, pp. 47–52.Google Scholar
  123. 123.
    Wong JYC, Mivechi NF, Paxton RJ, William LE, Beatty BG, Beatty JD, Shively JE. 1989. The effects of hyperthermia on tumor carcin-oembryonic antigen expression. Int J Radiat Oncol Biol Phys 17:803–808.PubMedGoogle Scholar
  124. 124.
    Wilder RB, Langmuir VK, Mendonca LH, Goris ML, Knox SJ. 1993. Local hyperthermia and SR 4233 enhance the antitumor effects of radioimmunotherapy in nude mice with human colonic adenocarcinoma xenografts. Cancer Res 53:3022–3027.PubMedGoogle Scholar
  125. 125.
    Mittal BB, Zimmer AM, Sathiaseelan V, Benson AB, Dutta S, Rosen ST, Spies SM, Mettler JM, Giroch MW. 1996. Phase II/II trial of combined 131I anti-CEA monoclonal anti-body and hyperthermia in patients with advanced colorectal adenocarcinoma. Cancer 78:1861–1870.PubMedGoogle Scholar
  126. 126.
    Sandhu TS, Kowal HS, Johnson RJ. 1978. The development of microwave hyperthermia applicators. Int J Radiat Oncol Biol Phys 4:515–519.PubMedGoogle Scholar
  127. 127.
    Montes H, Hynynen K. 1995. A system for simultaneous delivery of intraoperative radiation and ultrasound hyperthermia. Int J Hyper-therm 11:109–119.Google Scholar
  128. 128.
    Moros EG, Straube WL, Klein EE, Maurath J, Myerson RJ. 1995. Clinical system for simultaneous external superficial hyperthermia and cobalt-60 radiation. Int J Hypertherm 11:11–26.Google Scholar
  129. 129.
    Moros EG, Sträube WL, Klein EE, Yousof M, Myerson RJ. 1995. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: A feasibility study. Int J Radiat Oncol Biol Phys 31:893–904.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • V. Sathiaseelan
  • Bharat B. Mittal
  • Alan J. Fenn
  • Allen Taflove

There are no affiliations available

Personalised recommendations