Skip to main content

Three-Dimensional Treatment Planning and Conformal Dose Delivery — A Physicist’s Perspective

  • Chapter
Advances in Radiation Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 93))

Abstract

Radiation oncology is going through a new technological revolution comparable with the change brought about with the introduction of megavoltage medical linear accelerators. Imaging technologies such as x-ray computed tomography (CT) and magnetic resonance (MR) provide a fully three-dimensional (3D) model of the cancer patient’s anatomy that allows radiation oncologists to more accurately identify tumor volumes and their relationship to other critical normal organs. Increasing power and reliability of computers coupled with decreasing cost have spurred the development of powerful CT simulation and 3D radiation therapy treatment planning (3D RTTP) systems that are likely to replace the conventional radiation therapy x-ray simulator and two-dimensional (2D) dose-planning systems as the standard of practice early in the next century [1]. These advances in treatment planning have prompted medical accelerator manufacturers to use advanced electronics and computer technology to produce sophisticated treatment delivery systems capable of precise shaping of dose distributions via computer-controlled multileaf collimators and beam-intensity modulation [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

bl]References

  1. Purdy JA. 1996. 3-D radiation treatment planning: A new era. In Meyer JL, Purdy JA, eds. 3-D Conformai Radiotherapy. Basel: Karger, pp. 1–16.

    Google Scholar 

  2. Fraass BA. 1995. The development of conformal radiation therapy. Med Phys 22:1911–1921.

    PubMed  CAS  Google Scholar 

  3. Purdy JA. 1994. Evolution of three-dimensional radiation therapy treatment planning. In Purdy JA, Fraass BA, eds. Syllabus: A Categorical Course in Physics, Three-Dimensional Radiation Therapy Treatment Planning. Oak Brook, IL: Radiological Society of North America, pp. 9–15.

    Google Scholar 

  4. Takahashi S. 1965. Conformation radiotherapy: Rotation techniques as applied to radiography and radiotherapy of cancer. Acta Radiol Suppl 242:1–42.

    Google Scholar 

  5. Wright KA, Proimos BS, Trump JG, Smedal MI, Johnson DO, Salzman FA. 1959. Field shaping and selective protection in megavoltage therapy. Radiology 72:101.

    Google Scholar 

  6. Proimos BS. 1969. Shaping the dose distribution through a tumour model. Radiology 92:130–135.

    PubMed  CAS  Google Scholar 

  7. Trump JG, Wright KA, Smedal MI, Saltzman FA. 1961. Synchronous field shaping and protection in 2-million-volt rotational therapy. Radiology 76:275.

    PubMed  CAS  Google Scholar 

  8. Green A, Jennings WA, Christie HM. 1960. Rotational roentgen therapy in the horizontal plane. Acta Radiol 31:275–320.

    Google Scholar 

  9. Bjarngard B, Kijewski P, Pashby C. 1977. Description of a computer-controlled machine. Int J Radiat Oncol Biol Phys 2:142.

    Google Scholar 

  10. Kijewski PK, Chin LM, Bjarngard BE. 1978. Wedge-shaped dose distributions by computer-controlled collimator motion. Med Phys 5:426–429.

    PubMed  CAS  Google Scholar 

  11. Davy TJ. 1985. Physical aspects of conformation therapy using computer-controlled tracking units. In Orton CG, ed. Progress in Medical Radiation Physics, New York: Plenum, pp. 45–94.

    Google Scholar 

  12. Brace JA. 1985. Computer systems for the control of teletherapy units. In Orton CG, ed. Progress in Medical Radiation Physics. New York: Plenum, pp. 95–111.

    Google Scholar 

  13. Sterling TD, Knowlton KC, Weinkam JJ, Sterling DM. 1973. Dynamic display of radiotherapy plans using computer-produced films. Radiology 107:689.

    PubMed  CAS  Google Scholar 

  14. Reinstein LE, McShan D, Webber B, Glicksman AS. 1978. A computer-assisted three-dimensional treatment planning system. Radiology 127:259–264.

    PubMed  CAS  Google Scholar 

  15. McShan DL, Silverman A, Lanza D, Reinstein LE, Glicksman AS. 1979. A computerized three-dimensional treatment planning system utilizing interactive color graphics. Br J Radiol 52:478–481.

    PubMed  CAS  Google Scholar 

  16. Goitein M, Abrams M. 1983. Multidimensional treatment planning: I. Delineation of anatomy. Int J Radiat Oncol Biol Phys 9:777–787.

    PubMed  CAS  Google Scholar 

  17. Goitein M, Abrams M, Rowell D, Pollari H, Wiles J. 1983. Multi-dimensional treatment planning: II. Beam’s eye view, back projection, and projection through CT sections. Int J Radiat Oncol Biol Phys 9:789–797.

    PubMed  CAS  Google Scholar 

  18. Fraass BA, McShan DL. 1987. 3-D treatment planning. I. Overview of a clinical planning system. In The Use of Computers in Radiation Therapy, Proceedings of the 9th International Conference on the Use of Computers in Radiation Therapy. Scheveningen: The Netherlands, pp. 273–276.

    Google Scholar 

  19. Mohan R, Barest G, Brewster IJ, Chui CS, Lutcher GJ, Laughlin JS, Fuks Z. 1988. A comprehensive three-dimensional radiation treatment planning system. Int J Radiat Oncol Biol Phys 15:481–495.

    PubMed  CAS  Google Scholar 

  20. Purdy JA, Harms WB, Matthews JW, Drzymala RE, Emami B, Simpson JR, Manolis J, Rosenberger FU. 1993. Advances in 3-dimensional radiation treatment planning systems: Room-view display with real time interactivity. Int J Radiat Oncol Biol Phys 27:933–944.

    PubMed  CAS  Google Scholar 

  21. Sherouse GW, Chaney EL. 1991. The portable virtual simulator. Int J Radiat Oncol Biol Phys 21:475–483.

    PubMed  CAS  Google Scholar 

  22. Zink S. 1995. 3-D radiation treatment planning: NCI perspective. In Purdy JA, Emami B, eds. 3D Radiation Treatment Planning and Conformai Therapy. Madison, WI: Medical Physics Publishing, pp. 1–10.

    Google Scholar 

  23. Graham MV, Gerber R, Purdy JA. 1996. Patient positioning devices: Innovations for set-up precision, speed, and patient comfort. In Meyer JL, Purdy JA, eds. 3-D Conformai Radiotherapy. Basel: Karger, pp. 115–122.

    Google Scholar 

  24. Goitein M, Busse J. 1975. Immobilization error: Some theoretical considerations. Radiology 117:407–412.

    PubMed  CAS  Google Scholar 

  25. Kessler ML. 1994. Integration of multimodality image data for three-dimensional treatment planning. In Purdy JA, Fraass BA, eds. Syllabus: A Categorical Course in Physics, Three-Dimensional Radiation Therapy Treatment Planning. Oak Brook, IL: Radiological Society of North America, pp. 31–39.

    Google Scholar 

  26. Kuszyk BS, Ney DR, Fishman EK. 1995. The current state of the art in three dimensional oncologic imaging: An overview. Int J Radiat Oncol Biol Phys 33:1029–1039.

    PubMed  CAS  Google Scholar 

  27. Austin-Seymour M, Chen GTY, Rosenman J, Michalski J, Lindsley K, Goitein M. 1995. Tumor and target delineation: Current research and future challenges. Int J Radiat Oncol Biol Phys 33:1041–1052.

    PubMed  CAS  Google Scholar 

  28. Chaney EL, Pizer SM. 1992. Defining anatomical structures from medical images. Semin Radiat Oncol 2:215–225.

    PubMed  Google Scholar 

  29. ICRU. 1993. Report No. 50, Prescribing, Recording, and Reporting Photon Beam Therapy. Bethesda, MD: International Commission on Radiation Units and Measurements.

    Google Scholar 

  30. ICRU. 1978. Report No. 29, Dose Specification for Reporting External Beam Therapy with Photons and Electrons, Washington, D.C.: International Commission on Radiation Units and Measurements.

    Google Scholar 

  31. Purdy JA. 1996. Defining our goals: Volume and dose specification for 3-D conformai radiation therapy. In Meyer JL, Purdy JA, eds. 3-D Conformai Radiotherapy. Basel: Karger, pp. 24–30.

    Google Scholar 

  32. Purdy JA. 1996. Volume and dose specification, treatment evaluation, and reporting for 3D conformai radiation therapy. In Palta J, Mackie TR, eds. Teletherapy: Present and Future, College Park, MD: Advanced Medical Publishing, pp. 235–251.

    Google Scholar 

  33. Austin-Seymour M, Kalet I, Mcdonald J, Kromhout-Schiro S, Jacky J, Hummel S, Unger J. 1995. Three dimensional planning target volumes: A model and a software tool. Int J Radiat Oncol Biol Phys 33: 1073–1080.

    PubMed  CAS  Google Scholar 

  34. Purdy JA, Wong JW, Harms WB, Drzymala RE, Emami B, Matthews JW, Krippner K, Ramchander PK. 1987. Three dimensional radiation treatment planning system. In the Use of Computers in Radiation therapy, Proceedings of the 9th International Conference on the Use of Computers in Radiation Therapy. Scheveningen, The Netherlands, pp. 227–279.

    Google Scholar 

  35. Siddon RL. 1985. Fast calculation of the exact radiogical path for a three-dimensional CT array. Med Phys 12:252–255.

    PubMed  CAS  Google Scholar 

  36. Sherouse GW, Novins K, Chaney EL. 1990. Computation of digitally reconstructed radiographs for use in radiotherapy treatment design. Int J Radiat Oncol Biol Phys 18:651–658.

    PubMed  CAS  Google Scholar 

  37. Mackie TR, Reckwerdt P, Papanikolaou N. 1995. 3-D photon beam dose algorithms. In Purdy JA, Emami B, eds. 3D Radiation Treatment Planning and Conformai Therapy. Madison, WI: Medical Physics Publishing, pp. 201–222.

    Google Scholar 

  38. Purdy JA. 1992. Photon dose calculations for three-dimensional radiation treatment planning. Semin Radiat Oncol 2:235–245.

    PubMed  Google Scholar 

  39. Sontag MR, Cunningham JR. 1977. Corrections to absorbed dose calculations for tissue inhomogeneities. Med Phys 4:431–436.

    PubMed  CAS  Google Scholar 

  40. ICRU. 1976. Report No. 24, Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures. Washington, D.C.: International Commission on Radiation Units and Measurements.

    Google Scholar 

  41. Bentley RE, Milan J. 1971. An interactive digital computer system for radiotherapy treatment planning. Br J Radiol 44:826–833.

    PubMed  CAS  Google Scholar 

  42. Chui CS, Mohan RM. 1986. Off-center ratios for three-dimensional dose calculations. Med Phys 13:409–412.

    PubMed  CAS  Google Scholar 

  43. Wong JW, Purdy JA. 1990. On methods of inhomogeneity corrections for photon transport. Med Phys 17:807–814.

    PubMed  CAS  Google Scholar 

  44. Clarkson JR. 1941. A note on depth doses in fields of irregular shape. Br J Radiol 124:143–149.

    Google Scholar 

  45. Cundiff JH, Cunningham JR, Golden R, Lanze LJ, Meurk LJ, Ovadia J, Pagelast V, Pope RA, Sampiere VA, Saylor, WL, Shalek RJ, Suntharalingham N. 1973. A method for the calculation of dose in the radiation treatment of Hodgkin’s disease. AJR 117:30–44.

    CAS  Google Scholar 

  46. Nizin P, Qian X, Rashid H. 1993. “Zero-field” dose data for 60Co and other high-energy photon beams in water. Med Phys 20:1353–1360.

    PubMed  CAS  Google Scholar 

  47. Rice RK, Chin L. 1990. Monte Carlo calculations of scatter to primary ratios for normalisation of primary and scatter dose. Phys Med Biol 35:333–338.

    PubMed  CAS  Google Scholar 

  48. Mohan R, Chui C. 1985. Validity of the concept of separating primary and scatter dose. Med Phys 12:726–730.

    PubMed  CAS  Google Scholar 

  49. Woo MK, Cunningham JR, Jerioranski JJ. 1990. Extending the concept of primary and scatter separation to the condition of electronic disequilibrium. Med Phys 17:588–595.

    PubMed  CAS  Google Scholar 

  50. Mackie TR, Scrimger JW, Battista JJ. 1985. A convolution method of calculating dose for 15-MV x-rays. Med Phys 12:188–196.

    PubMed  CAS  Google Scholar 

  51. Mohan R, Chui C, Lidofsky L. 1986. Differential pencil beam dose computation model for photons. Med Phys 13:64–73.

    PubMed  CAS  Google Scholar 

  52. Holmes T, Mackie TR. 1991. A unified approach to the optimization of brachytherapy and external beam therapy. Int J Radiat Oncol Biol Phys 20:859–873.

    PubMed  CAS  Google Scholar 

  53. Mackie TR. 1990. The Ottawa-Madison Electron Gamma Algorithm (Omega) project: Feasibility of two Monte Carlo techniques. Proceedings of the X International Conference on the Use of Computers in Radiation Therapy, Lucknow, India, pp. 250–253.

    Google Scholar 

  54. Rogers DWO, Bielajew AF. 1990. Monte Carlo techniques of electron and photon transport for radiation dosimetry. In Kase KR, Bjarngard BE, Attix FH, eds. The Dosimetry of Ionizing Radiation, Volume III. San Diego, CA: Academic Press.

    Google Scholar 

  55. Shipley WU, Tepper JE, Prout GR, Verhey LH, Mendiondo OA, Goitein M, Koehler AM, Suit HD. 1979. Proton radiation as boost therapy for localized prostatic carcinoma. JAMA 241:1912–1915.

    PubMed  CAS  Google Scholar 

  56. Drzymala RE, Mohan R, Brewster L, Chu J, Goitein M, Harms W, Urie M. 1991. Dose-volume histograms. Int J Radiat Oncol Biol Phys 21:71–78.

    PubMed  CAS  Google Scholar 

  57. Drzymala RE, Holman MD, Yan D, Harms WB, Jain NL, Kahn MG, Emami B, Purdy JA. 1994. Integrated software tools for the evaluation of radiotherapy treatment plans. Int J Radiat Oncol Biol Phys 30:909–919.

    PubMed  CAS  Google Scholar 

  58. Lawrence TS, Kessler ML, Ten Haken RK. 1996. Clinical interpretation of dose-volume histograms: The basis for normal tissue preservation and tumor dose escalation. In Meyer JL, Purdy JA, eds. 3-D Conformai Radiotherapy. Basel: Karger, pp. 57–66.

    Google Scholar 

  59. Goitein M. 1992. The comparison of treatment plans. Semin Radiat Oncol 2:246–256.

    PubMed  Google Scholar 

  60. Kutcher GJ. 1996. Quantitative plan evaluation: TCP/NTCP models. Front Radiat Ther Oncol 3-D Conformai Radiotherapy. Basel: Karger, 29:67–80.

    Google Scholar 

  61. Lyman JT, Wolbarst AB. 1987. Optimization of radiation therapy. III. A method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 13:103–109.

    PubMed  CAS  Google Scholar 

  62. Lyman JT. 1985. Complication probability as assessed from dose volume histograms. Radiat Res 104:S–13–S–19.

    Google Scholar 

  63. Wolbarst AB, Chin LM, Svensson GK. 1982. Optimization of radiation therapy: Integral-response of a model biological system. Int J Radiat Oncol Biol Phys 8:1761–1769.

    PubMed  CAS  Google Scholar 

  64. Olsen DR, Kambestad BK, Kristoffersen DT. 1994. Calculation of radiation induced complication probabilities for brain, liver and kidney, and the use of a reliability model to estimate critical volume fractions. Br J Radiol 67:1218–1225.

    PubMed  CAS  Google Scholar 

  65. Withers HR, Taylor JMG, Maciejewski B. 1988. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14:751–759.

    PubMed  CAS  Google Scholar 

  66. Källman P, Lind BK, Brahme A. 1992. An algorithm for maximizing the probability of complication free tumor control in radiation therapy. Int J Radiat Oncol Biol Phys 37:871–890.

    Google Scholar 

  67. Kutcher G, Berman C. 1989. Calculation of complication probability factors for non-uniform tissue irradiation: The effective volume method. Int J Radiat Oncol Biol Phys 16: 1623–1630.

    PubMed  CAS  Google Scholar 

  68. Niemierko A, Goitein M. 1991. Calculation of normal tissue complication probability and dose-volume histogoram reduction schemes for tissues with a critical element architecture. Radiother Oncol 20:166–176.

    PubMed  CAS  Google Scholar 

  69. Goitein M. 1987. The probability of controlling an inhomogeneously irradiated tumor. NCI Contract Report: Evaluation of Treatment Planning for Particle Beam Radiotherapy, 1987.

    Google Scholar 

  70. Brahme A. 1984. Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23:379–391.

    PubMed  CAS  Google Scholar 

  71. Myrianthopoulos LC, Chen GTY, Vijayakumar S, Halperin HJ, Spelbring DR, Pelizzari CA. 1992. Beam’s eye view volumetrics: An aid in rapid treatment plan development and evaluation. Int J Radiat Oncol Biol Phys 23:367–375.

    PubMed  CAS  Google Scholar 

  72. Chen GTY, Spelbring DR, Pelizzari CA. 1992. Use of beam’s eye view volumetrics in the selection of non-coplanar radiation portals. Int J Radiat Oncol Biol Phys 23:153–163.

    PubMed  CAS  Google Scholar 

  73. McShan DL, Kessler ML, Braass BA. 1995. Advanced interactive planning techniques for conformai therapy: High level beam descriptions and volumetric mapping techniques. Int J Radiat Oncol Biol Phys 33:1061–1072.

    PubMed  CAS  Google Scholar 

  74. Matthews JW, Rosenberger FU, Purdy JA. 1994. Three-dimensional treatment plan optimization by using real-time systems. In Purdy JA, Fraass BA, eds. Syllabus: A Categorical Course in Physics, Three-Dimensional Radiation Therapy Treatment Planning. Oak Brook, IL: Radiological Society of North America, pp. 75–79.

    Google Scholar 

  75. Matthews JW, Rosenberger FU, Bosch WR, Harms WB, Purdy JA. 1996. Real-time 3D dose calculation and dislay: A tool for plan optimization. Int J Radiat Oncol Biol Phys 36:159–165.

    PubMed  CAS  Google Scholar 

  76. Hope CS, Orr JS. 1965. Computer optimization of 4 MeV treatment planning. Phys Med Biol 10:365–370.

    Google Scholar 

  77. McDonald SC, Rubin P. 1977. Optimization of external beam radiation therapy. Int J Radiat Oncol Biol Phys 2:307–317.

    PubMed  CAS  Google Scholar 

  78. McShan DL. 1994. Three-dimensional treatment plan optimization (improvement) methods. In Purdy JA, Fraass BA, eds. Syllabus: A Categorical Course in Physics, Three-Dimensional Radiation Therapy Treatment Planning. Oak Brook, IL: Radiological Society of North America, pp. 47–53.

    Google Scholar 

  79. Niemierko A. 1995. Treatment plan optimization. In Purdy JA, Emani B, eds. 3D Radiation Treatment Planning and Conformai Therapy. Madison, WI: Medical Physics Publishing, pp. 49–55.

    Google Scholar 

  80. Jain NL, Kahn M. 1995. Clinical decision-support systems in radiation therapy. In Purdy JA, Emami B, eds. 3D Radiation Treatment Planning and Conformai Therapy. Madison, WI: Medical Physics Publishing, pp. 447–465.

    Google Scholar 

  81. Jain NL, Kahn MG, Drzymala RE, Emami B, Purdy JA. 1993. Objective evaluation of 3-D radiation treatment plans: A decision-analytic tool incorporating treatment preferences of radiation oncologists. Int J Radiat Oncol Biol Phys 26:321–333.

    PubMed  CAS  Google Scholar 

  82. Schultheiss TE. 1985. Models in radiotherapy: Definition of decision criteria. Med Phys 12:183–187.

    PubMed  CAS  Google Scholar 

  83. Niemierko A, Urie M, Goitein M. 1992. Optimization of 3D radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 23:99–108.

    PubMed  CAS  Google Scholar 

  84. Rosen II, Lane RG, Morrill SM, Belli JA. 1991. Treatment plan optimization using linear programming. Med Phys 18:141–152.

    PubMed  CAS  Google Scholar 

  85. Rosen II, Morrill SM, Lane RG. 1992. Optimized dynamic rotation with wedges. Med Phys 19:971–977.

    PubMed  CAS  Google Scholar 

  86. Langer M, Brown R, Urie M, Leong J, Stracher M, Shapiro J. 1990. Large scale optimization of beam weights under dose-volume restriction. Int J Radiat Oncol Biol Phys 18:887–893.

    PubMed  CAS  Google Scholar 

  87. Langer M, Brown R, Kijewski P, Ha C. 1993. The reliability of optimization under dose-volume limits. Int J Radiat Oncol Biol Phys 26:529–538.

    PubMed  CAS  Google Scholar 

  88. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E. 1953. Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092.

    CAS  Google Scholar 

  89. Kirkpatrick S, Gelatt CD, Vecchi MP. 1983. Optimization by simulated annealing. Science 220:671–680.

    PubMed  CAS  Google Scholar 

  90. Webb S. 1989. Optimization of conformai radiotherapy dose distributions by simulated annealing. Phys Med Biol 34:1349–1370.

    PubMed  CAS  Google Scholar 

  91. Mohan R, Mageras GS, Baldwin B, Brewster LJ, Kutcher GJ, Leibel S, Burman CM, Ling CC, Fuks Z. 1992. Clinically relevant optimization of 3-D conformai treatments, Med Phys 19:933–944.

    PubMed  CAS  Google Scholar 

  92. Mohan R, Wang X, Jackson A, Bortfeld T, Boyer AL, Kutcher GJ, Leibel A, Fuks Z, Ling CC. 1994. The potential and limitations of the inverse radiotherapy technique. Radiother Oncol 32:232–248.

    PubMed  CAS  Google Scholar 

  93. Morrill SM, Lane RG, Jacobson G, Rosen II. 1991. Treatment planning optimization using constrained simulated annealing. Phys Med Biol 36:1341–1361.

    PubMed  CAS  Google Scholar 

  94. Mageras GS, Mohan R. 1993. Application of fast simulated annealing to optimization of conformal radiation treatments. Med Phys 20:639–647.

    PubMed  CAS  Google Scholar 

  95. Webb S. 1992. Optimization by simulated annealing of three-dimensional, conformai treatment planning for radiation fields determined by a multileaf collimator. II. Inclusion of two-dimensional modulation of the x-ray intensity. Phys Med Biol 37:1689–1704.

    PubMed  CAS  Google Scholar 

  96. Brahme A, Roos JE, Lax I. 1982. Solution of an integral equation in rotation therapy. Phys Med Biol 27:1221–1229.

    PubMed  CAS  Google Scholar 

  97. Bortfeld T, Burkelback J, Boesecke R, Schlegel W. 1992. Three-dimensional solution of the inverse problem in conformation radiotherapy. In Advanced Radiation Therapy: Tumor Response Monitoring and Treatment Planning, Breit A, ed. Berlin: Springer-Verlag pp. 503–508.

    Google Scholar 

  98. Barth N. 1990. An inverse problem in radiation therapy. Int J Radiat Oncol Biol Phys 18:425–431.

    PubMed  CAS  Google Scholar 

  99. Kooy HM, Barth NH. 1990. The verification of an inverse problem in radiation therapy. Int J Radiat Oncol Biol Phys 18:433–439.

    PubMed  CAS  Google Scholar 

  100. Boyer AL, Ochran TG, Nyerick CE, Waldron TJ, Huntzinger CJ. 1992. Clinical dosimetry for implementation of a multileaf collimator. Med Phys 19:1255–1261.

    PubMed  CAS  Google Scholar 

  101. Klein EE. 1994. Implementation and Clinical Use of Multileaf Collimation. In Purdy JA, Fraass BA, eds. Syllabus: A Categorical Course in Physics, Three-Dimensional Radiation Therapy Treatment Planning. Oak Brook, IL: Radiological Society of North America.

    Google Scholar 

  102. Webb S. 1993. The Physics of Three-Dimensional Radiation Therapy. Bristol, UK: Institute of Physics Publishing, p. 373.

    Google Scholar 

  103. Fraass BA. 1994. Computer-controlled three-dimensional conformai therapy delivery systems. In Purdy JA, Fraass BA, eds. Syllabus: A Categorical Course in Physics, Three-dimensional Radiation Therapy Treatment Planning. Oak Brook IL: Radiological Society of North America, pp. 93–100.

    Google Scholar 

  104. Fraass BA, McShan DL, Kessler ML, Matrone GM, Lewis JD, Weaver TA. 1995. A computer-controlled conformai radiotherapy system: I. overview. Int J Radiat Oncol Biol Phys 33:1139–1157.

    PubMed  CAS  Google Scholar 

  105. McShan DL, Fraass BA, Kessler ML, Matrone TM, Lewis JD, Weaver TA. 1995. A computer-controlled conformai radiotherapy system. II: sequence processor. Int J Radiat Oncol Biol Phys 33:1159–1172.

    PubMed  CAS  Google Scholar 

  106. Boyer AL. 1995. Present and future developments in radiotherapy treatment units. Semin Radiat Oncol 5:146–155.

    PubMed  Google Scholar 

  107. Purdy JA. 1996. Intensity-Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys 35:845–846.

    PubMed  CAS  Google Scholar 

  108. Carol MP. 1995. Integrated 3D conformai planning/multivane intensity modulating delivery system for radiotherapy. In Purdy JA, Emami B, eds. 3D Radiation Treatment Planning and Conformai Therapy. Madison, WI: Medical Physics Publishing, pp. 435–445.

    Google Scholar 

  109. Grant W. 1996. Experience with intensity modulated beam delivery. In Palta J, Mackie TR, eds. Teletherapy: Present and Future. College Park, MD: Advanced Medical Publishing, pp. 793–804.

    Google Scholar 

  110. Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J, Paliwal B, Kinsella T. 1993. Tomotherapy: A new concept for the delivery of dynamic conformai radiotherapy. Med Phys 20:1709–1719.

    PubMed  CAS  Google Scholar 

  111. Mackie TR. 1996. Private communication.

    Google Scholar 

  112. Convery DJ, Rosenbloom ME. 1992. The generation of intensity-modulated fields for conformai radiotherapy by dynamic collimation. Phys Med Biol 37:1359–1374.

    Google Scholar 

  113. Bortfeld T, Kahler DL, Waldron TJ, Boyer AL. 1994. X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys 28:723–730.

    PubMed  CAS  Google Scholar 

  114. Bortfield T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ. 1994. Realization and verification of the three dimensional conformai radiotherapy with modulated fields. Int J Radiat Oncol Biol Phys 30:1994.

    Google Scholar 

  115. Spirou SV, Chui CS. 1994. Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Med Phys 21:1031–1041.

    PubMed  CAS  Google Scholar 

  116. Ling CC, Burman C, Chui CS, Kutcher GJ, Leibel SA, LoSasso T, Mohan R, Bortfeld T, Reinstein L, Spirou S, Wang XH, Wu Q, Zelefsky M, Fuks Z. 1996. Conformai radiation treatment of prostate cancer using inversely-planned intensity modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys 35:721–730.

    PubMed  CAS  Google Scholar 

  117. Yu CX. 1995. Intensity modulated arc therapy with dynamic multileaf collimation: An alternative to tomotherapy. Phys Med Biol 40:1435–1449.

    PubMed  CAS  Google Scholar 

  118. Bosch WR, 1994. Integrating the management of patient treatment planning and image data. In Purdy JA, Fraass BA, eds. Syllabus: A Categorical Course in Physics. Oak Brook, IL: Radiological Society of North America, pp. 151–159.

    Google Scholar 

  119. Harms WB. 1995. RTOG Specification for Tape/Network Format for Exchange of Treatment Planning Information, Version 3.21.

    Google Scholar 

  120. Jacky J, Kalet I, Chen J, Coggins J, Cousins S, Drzymala R, Harms W, Kahn M, Kromhout-Schiro S, Sherouse G, Tracton G, Unger J, Weinhous M, Yan D. 1994. Portable software tools for 3D radiation therapy planning. Int J Radiat Oncol Biol Phys 30:921–928.

    PubMed  CAS  Google Scholar 

  121. Mclntyre J. 1993. Understanding DICOM 3.0, version 1.0. Rochester, NY: Kodak Health Imaging Systems.

    Google Scholar 

  122. Harms WB, Purdy JA, Emami B, Gerber RL, Low DA, Cheng A. 1994. Quality assurance for three-dimensional treatment planning. In Purdy JA, Fraass BA, eds. Syllabus: A Categorical Course in Physics. Three-dimensional Radiation Therapy Treatment Planning. Oak Brook, IL: Radiological Society of North America, pp. 161–167.

    Google Scholar 

  123. Ten Haken RK, Fraass BA. 1996. Quality assurance in 3-D treatment planning. Front Radiat Ther Oncol 3-D Conformai Radiotherapy. Basel: Karger, 29:104–114.

    Google Scholar 

  124. Harms WB, Low DA, Purdy JA. 1994. Commissioning a three-dimensional dose-calculation algorithm for clinical use. In Purdy JA, Fraass BA, eds. Syllabus: A Categorical Course in Physics, Three-dimensional Radiation Therapy Treatment Planning. Oak Brook, IL: Radiological Society of North America, pp. 111–115.

    Google Scholar 

  125. Shiu AS, Tung S, Hogstrom KR, Wong JW, Gerber RL, Harms WB, Purdy JA,. Ten Haken RK, McShan DL, Fraass BA. 1992. Verification data for electron beam dose algorithms. Med Phys 19:623–636.

    PubMed  CAS  Google Scholar 

  126. Van Dyk J, Barrett RB, Cygler JE, Shraggo PC. 1993. Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 26:261–273.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Purdy, J.A. (1998). Three-Dimensional Treatment Planning and Conformal Dose Delivery — A Physicist’s Perspective. In: Mittal, B.B., Purdy, J.A., Ang, K.K. (eds) Advances in Radiation Therapy. Cancer Treatment and Research, vol 93. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5769-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5769-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7644-6

  • Online ISBN: 978-1-4615-5769-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics