Skip to main content

On the mechanism of the phospholipase C-mediated attenuation of cardiolipin biosynthesis in H9c2 cardiac myoblast cells

  • Chapter
Molecular and Cellular Effects of Nutrition on Disease Processes

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 26))

  • 199 Accesses

Abstract

The effect of phospholipase C treatment on cardiolipin biosynthesis was investigated in intact H9c2 cardiac myoblasts. Treatment of cells with phosphatidylcholine-specific Clostridium welchii phospholipase C reduced the pool size of phosphatidylcholine compared with controls whereas the pool size of cardiolipin and phosphatidylglycerol were unaffected. Pulse labeling experiments with [ 1,3-3H]glycerol and pulse-chase labeling experiments with [ 1,3-3H]glycerol were performed in cells incubated or pre-incubated in the absence or presence of phospholipase C. In all experiments, radioactivity incorporated into cardiolipin and phosphatidylglycerol were reduced in phospholipase C-treated cells with time compared with controls indicating attenuated de novo biosynthesis of these phospholipids. Addition of 1,2-dioctanoyl-sn-glycerol, a cell permeable 1,2-diacyl-sn-glycerol analog, to cells mimicked the inhibitory effect of phospholipase C on cardiolipin and phosphatidylglycerol biosynthesis from [1,3-3H]glycerol indicating the involvement of 1,2-diacyl-sn-glycerol. The mechanism for the reduction in cardiolipin and phosphatidylglycerol biosynthesis in phospholipase C-treated cells appeared to be a decrease in the activities of phosphatidic acid:cytidine-5′triphosphate cytidylyltransferase and phosphatidylglycerolphosphate synthase, mediated by elevated 1,2-diacyl-sn-glycerol levels. Upon removal of phospholipase C from the incubation medium, phosphatidylcholine biosynthesis from [methyl-3H]choline was markedly stimulated. These data suggest that de novo phosphatidylglycerol and cardiolipin biosynthesis may be regulated by 1,2-diacyl-sn-glycerol and support the notion that phosphatidylglycerol and cardiolipin biosynthesis may be coordinated with phosphatidylcholine biosynthesis in H9c2 cardiac myoblast cells. (Mol Cell Biochem 188:217–223, 1998)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hatch GM: Regulation of cardiolipin biosynthesis in the heart. Mol Cell Biochem 159: 139–148, 1996

    Article  PubMed  CAS  Google Scholar 

  2. Hostetler KY: Polyglycerophospholipids: Phosphatidylglycerol, diphosphatidylglycerol and bis(monoacylglycerol)phosphate. In J.N. Hawthorne, G.B. Ansell (eds). Phospholipids. Elsevier, Amsterdam, 1982, pp 215–261

    Google Scholar 

  3. Poorthuis BJ, Yazaki PJ, Hostetler KY: An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J Lipid Res 17: 433–437, 1976

    PubMed  CAS  Google Scholar 

  4. Hatch GM: Cardiolipin biosynthesis in the isolated heart. Biochem J 297: 201–208, 1994

    PubMed  CAS  Google Scholar 

  5. Hostetler KY, Van Den Bosch H, Van Deenen LLM: Biosynthesis of cardiolipin in liver mitochondria. Biochim Biophys Acta 239: 113–119, 1971

    Article  PubMed  CAS  Google Scholar 

  6. Schlame M, Hostetler KY: Solubilization, puriffcation and characterization of cardiolipin synthase from rat liver mitochondria. J Biol Chem 266: 22398–22403, 1991

    PubMed  CAS  Google Scholar 

  7. Kiyasu JY, Pieringer RA, Paulus H, Kennedy EP: The biosynthesis of phosphatidylglycerol. J Biol Chem 238: 2293–2298, 1963

    PubMed  CAS  Google Scholar 

  8. Hatch GM, McClarty G: Regulation of cardiolipin biosynthesis by cytidine-5′-triphosphate in H9c2 cardiac myoblast cells. J Biol Chem 271: 25810–25816, 1996

    Article  PubMed  CAS  Google Scholar 

  9. Lin CH, Lin J, Strickland KP: Bovine brain microsomal CDP-diacylglycerol synthetase: solubilization and properties. Biochem Int 25: 299–306, 1991

    PubMed  CAS  Google Scholar 

  10. Mok AYP, McDougall GE, McMurray WC: Comparative studies of CDPdiacylglycerol synthase in rat liver mitochondria and microsomes. Biochem. Cell Biol 71: 183–189, 1993

    Article  PubMed  CAS  Google Scholar 

  11. McMurray WC, Jarvis EC: Purification and properties of phosphatidyl-glycerolphosphate synthetase from mammalian liver mitochondria. Can J Biochem 56: 414–419, 1978

    Article  PubMed  CAS  Google Scholar 

  12. Folch J, Lees M, Sloane-Stanley GA: A simple method for the isolation and purification oftotal lipides from animal tissue. J Biol Chem 226: 497–509, 1957

    PubMed  CAS  Google Scholar 

  13. Saggerson ED, Greenbaum AL: The effect of dietary and hormonal conditions on the activities of glycolytic enzymes in rat epididymal adipose tissue. Biochem J 115: 405–417, 1969

    PubMed  CAS  Google Scholar 

  14. Lowry OH, Rosebrough NJ, Farr AL, Randall, RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  CAS  Google Scholar 

  15. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal Biochem 72: 248–254, 1976

    Article  PubMed  CAS  Google Scholar 

  16. Rouser G, Siakotos AN, Fleischer S: Quantitative analysis of phospholipids by thinlayer chromatography and phosphorus analysis of spots. Lipids 1: 85–86, 1966

    Article  PubMed  CAS  Google Scholar 

  17. Kimes BW, Brandt BL: Properties of a cloned muscle cell line from rat heart. Exp Cell Res 98: 367–381, 1976

    Article  PubMed  CAS  Google Scholar 

  18. Jamil H, Hatch GM, Vance DE: Evidence that binding of CTP: phosphocholine cytidylyltransferase to membranes in rat hepatocytes is modulated by the ratio of bilayerto non-bilayer-forming lipids. Biochem J 291: 419–427, 1993

    PubMed  CAS  Google Scholar 

  19. Sleight R, Kent C: Regulation of phosphatidylcholine biosynthesis in cultured chick embryonic muscle treated with phospholipase C. J Biol Chem 255: 10644–10650, 1980

    PubMed  CAS  Google Scholar 

  20. Bergelson LD, Dyatlovitskaya EV, Torkhovskaya TI, Sorokina IB and Gorkova NP: Phospholipid composition of the tumor cell. Biochim Biophys Acta 210: 287–298, 1970

    Article  PubMed  CAS  Google Scholar 

  21. Raynier M, Sari H, d’Anglebermes M, Ahkye E and Pasero L: Differences in lipid characteristics of undifferentiated and enterocytic differentiated HT29 human colonic cells. Cancer Res 51: 1270–1277, 1991

    Google Scholar 

  22. Rusnak A, Mangat R, Xu F, McClarty G and Hatch GM: Cardiolipin remodeling in a Chinese hamster lung fibroblast cell line deficient in oxidative energy production. J Bioenerg Biomemb 29: 291–298, 1997

    Article  CAS  Google Scholar 

  23. Xu F, Taylor W and Hatch GM: Lysophosphatidylcholine inhibits cardiolipin biosynthesis in H9c2 cardiac myoblast cells. Arch Biochem Biophys 349: 341–348, 1998

    Article  PubMed  CAS  Google Scholar 

  24. Brindley DN: Metabolism of triacylglycerols. In: D.E. Vance, J.E. Vance (eds). Biochemistry of Lipids Lipoproteins and Membranes. Elsevier, Amsterdam, 1991, pp 171–204

    Google Scholar 

  25. UtalAK, Jamil H, Vance DE: Diacylglycerol signals the translocation of CTPxholinephosphate cytidylyltransferase in HeLa cells treated with 12-O-tetradecanoylphorbol-13-acetate. J Biol Chem 266: 24084–24091, 1991

    Google Scholar 

  26. Kolesnick RN, Hemer MR: Physiologic 1,2-diacylglycerol levels induce protein kinase C-independent translocation of a regulatory enzyme. J Biol Chem 265: 10900–10904, 1990

    PubMed  CAS  Google Scholar 

  27. Slack BE, Breu J, Wurtman RJ: Production of diacylglycerol by exogenous phospholipase C stimulates CTP:phosphocholine cytidylyltransferase activity and phosphatidylcholine biosynthesis in human neuroblastoma cells. J Biol Chem 266: 24503–24508, 1991

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xu, F.Y., Kelly, S.L., Taylor, W.A., Hatch, G.M. (1998). On the mechanism of the phospholipase C-mediated attenuation of cardiolipin biosynthesis in H9c2 cardiac myoblast cells. In: Pierce, G.N., Izumi, T., Rupp, H., Grynberg, A. (eds) Molecular and Cellular Effects of Nutrition on Disease Processes. Developments in Molecular and Cellular Biochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5763-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5763-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7641-5

  • Online ISBN: 978-1-4615-5763-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics